scholarly journals Solvability and algorithms of generalized nonlinear variational-like inequalities in reflexive Banach spaces

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Haiyan Gao ◽  
Lili Wang ◽  
Liangshi Zhao

Abstract This paper deals with solvability and algorithms for a new class of generalized nonlinear variational-like inequalities in reflexive Banach spaces. By employing the Banach’s fixed point theorem, Schauder’s fixed point theorem, and FanKKM theorem, we obtain a sufficient condition which guarantees the existence of solutions for the generalized nonlinear variational-like inequality. We introduce also an auxiliary variational-like inequality and, by utilizing the minimax inequality, get the existence and uniqueness of solutions for the auxiliary variational-like inequality, which is used to suggest an iterative algorithm for solving the generalized nonlinear variational-like inequality. Under certain conditions, by means of the auxiliary principle technique, we both establish the existence and uniqueness of solutions for the generalized nonlinear variational-like inequality and discuss the convergence of iterative sequences generated by the iterative algorithm. Our results extend, improve, and unify several known results in the literature.

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jianjie Wang ◽  
Ali Mai ◽  
Hong Wang

Abstract This paper is mainly devoted to the study of one kind of nonlinear Schrödinger differential equations. Under the integrable boundary value condition, the existence and uniqueness of the solutions of this equation are discussed by using new Riesz representations of linear maps and the Schrödinger fixed point theorem.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


2018 ◽  
Vol 1 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Mısır J. Mardanov ◽  
Yagub A. Sharifov ◽  
Kamala E. Ismayilova

AbstractThis paper is devoted to a system of nonlinear impulsive differential equations with three-point boundary conditions. The Green function is constructed and considered original problem is reduced to the equivalent impulsive integral equations. Sufficient conditions are found for the existence and uniqueness of solutions for the boundary value problems for the first order nonlinear system of the impulsive ordinary differential equations with three-point boundary conditions. The Banach fixed point theorem is used to prove the existence and uniqueness of a solution of the problem and Schaefer’s fixed point theorem is used to prove the existence of a solution of the problem under consideration. We illustrate the application of the main results by two examples.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. I. Berenguer ◽  
D. Gámez ◽  
A. J. López Linares

With the aid of fixed-point theorem (an equivalent version for the linear case) and biorthogonal systems in adequate Banach spaces, the problem of approximating the solution of a linear Fredholm-Volterra integro-differential equation is turned into a numerical algorithm, so that it can be solved numerically.


Author(s):  
Zahra Ahmadi ◽  
Rahmatollah Lashkaripour ◽  
Hamid Baghani ◽  
Shapour Heidarkhani

AbstractIn this paper, we introduce an Caputo fractional high-order problem with a new boundary condition including two orders $\gamma \in \left({n}_{1}-1,{n}_{1}\right]$ and $\eta \in \left({n}_{2}-1,{n}_{2}\right]$ for any ${n}_{1},{n}_{2}\in \mathrm{ℕ}$. We deals with existence and uniqueness of solutions for the problem. The approach is based on the Krasnoselskii’s fixed point theorem and contraction mapping principle. Moreover, we present several examples to show the clarification and effectiveness.


2018 ◽  
Vol 1 (25) ◽  
pp. 493-508
Author(s):  
Fawzi Mutter Ismaael

The Study aims in this paper to give and investigate the existence and uniqueness of mild solutions to nonlinear functional integrodifferential equations in Banach Spaces. the fixed point theorem, according to Sadovskii and sutible necessary conditions, are concepts consulted to obtain the results in the work


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Kalpana Gopalan ◽  
Sumaiya Tasneem Zubair ◽  
Thabet Abdeljawad ◽  
Nabil Mlaiki

The objective of the research article is two-fold. Firstly, we present a fixed point result in the context of triple controlled metric type spaces with a distinctive contractive condition involving the controlled functions. Secondly, we consider an initial value problem associated with a nonlinear Volterra–Fredholm integro-dynamic equation and examine the existence and uniqueness of solutions via fixed point theorem in the setting of complete triple controlled metric type spaces. Furthermore, the theorem is applied to illustrate the existence of a unique solution to an integro-dynamic equation.


2015 ◽  
Vol 9 (2) ◽  
pp. 221-244 ◽  
Author(s):  
Ángel Almeida ◽  
Antonio-Francisco Roldán-López-de-Hierro ◽  
Kishin Sadarangani

In this paper, we present some fixed point theorems for contractions of rational type. These theorems generalize some other results appearing in the literature. Moreover, we present some examples illustrating our results. Finally, we present an application to the study of the existence and uniqueness of solutions to a class of functional equations arising in dynamic programming.


Sign in / Sign up

Export Citation Format

Share Document