scholarly journals Oscillatory behavior of a second order nonlinear advanced differential equation with mixed neutral terms

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hongwei Shi ◽  
Yuzhen Bai

AbstractIn this paper, we present several new oscillation criteria for a second order nonlinear differential equation with mixed neutral terms of the form $$ \bigl(r(t) \bigl(z'(t)\bigr)^{\alpha }\bigr)'+q(t)x^{\beta } \bigl(\sigma (t)\bigr)=0,\quad t\geq t_{0}, $$(r(t)(z′(t))α)′+q(t)xβ(σ(t))=0,t≥t0, where $z(t)=x(t)+p_{1}(t)x(\tau (t))+p_{2}(t)x(\lambda (t))$z(t)=x(t)+p1(t)x(τ(t))+p2(t)x(λ(t)) and α, β are ratios of two positive odd integers. Our results improve and complement some well-known results which were published recently in the literature. Two examples are given to illustrate the efficiency of our results.

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 524 ◽  
Author(s):  
Osama Moaaz ◽  
Poom Kumam ◽  
Omar Bazighifan

In this work, we study the oscillatory behavior of a class of fourth-order differential equations. New oscillation criteria were obtained by employing a refinement of the Riccati transformations. The new theorems complement and improve a number of results reported in the literature. An example is provided to illustrate the main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Shao ◽  
Fanwei Meng

Using the generalized variational principle and the Riccati technique, new oscillation criteria are established for the forced second-order nonlinear differential equation, which improves and generalizes some of the new results in literature.


1995 ◽  
Vol 18 (4) ◽  
pp. 823-824 ◽  
Author(s):  
Allan Kroopnick

In this note we present a boundedness theorem to the equationx″+c(t,x,x′)+a(t)b(x)=e(t)wheree(t)is a continuous absolutely integrable function over the nonnegative real line. We then extend the result to the equationx″+c(t,x,x′)+a(t,x)=e(t). The first theorem provides the motivation for the second theorem. Also, an example illustrating the theory is then given.


Sign in / Sign up

Export Citation Format

Share Document