scholarly journals New type of degenerate Daehee polynomials of the second kind

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.

Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de…ned (q, r, w)-Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q, r, w)-Stirling numbers of the second kind and q-Bernoulli polynomials in w.


Author(s):  
Arnold Adelberg

Several new estimates for the [Formula: see text]-adic valuations of Stirling numbers of the second kind are proved. These estimates, together with criteria for when they are sharp, lead to improvements in several known theorems and their proofs, as well as to new theorems, including a long-standing open conjecture by Lengyel. The estimates and criteria all depend on our previous analysis of powers of [Formula: see text] in the denominators of coefficients of higher order Bernoulli polynomials. The corresponding estimates for Stirling numbers of the first kind are also proved. Some attention is given to asymptotic cases, which will be further explored in subsequent publications.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 847 ◽  
Author(s):  
Dmitry V. Dolgy ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Taekyun Kim

In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z p . In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 243
Author(s):  
Dmitry Kruchinin ◽  
Vladimir Kruchinin ◽  
Yilmaz Simsek

The aim of this paper is to study the Tepper identity, which is very important in number theory and combinatorial analysis. Using generating functions and compositions of generating functions, we derive many identities and relations associated with the Bernoulli numbers and polynomials, the Euler numbers and polynomials, and the Stirling numbers. Moreover, we give applications related to the Tepper identity and these numbers and polynomials.


2019 ◽  
Vol 106 (120) ◽  
pp. 113-123
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The Fubini type polynomials have many application not only especially in combinatorial analysis, but also other branches of mathematics, in engineering and related areas. Therefore, by using the p-adic integrals method and functional equation of the generating functions for Fubini type polynomials and numbers, we derive various different new identities, relations and formulas including well-known numbers and polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers of the second kind, the ?-array polynomials and the Lah numbers.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and an inversion formula for the Stirling numbers of the first and second kinds, the authors establish meaningfully and significantly two identities which simplify coefficients in a family of ordinary differential equations associated with higher order Bernoulli numbers of the second kind.


Author(s):  
Feng Qi ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors establish two identities, which can be regarded as nonlinear differential equations, for the generating function of Eulerian polynomials, find two identities for the Stirling numbers of the second kind, and present two identities for Eulerian polynomials and higher order Eulerian polynomials, pose two open problems about summability of two finite sums involving the Stirling numbers of the second kind. Some of these conclusions meaningfully and significantly simplify several known results.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

The new type degenerate of Bell polynomials and numbers were recently introduced, which are a degenerate version of Bell polynomials and numbers and are different from the previously introduced partially degenerate Bell polynomials and numbers. Several expressions and identities on those polynomials and numbers were obtained. In this paper, as a further investigation of the new type degenerate Bell polynomials, we derive several identities involving those degenerate Bell polynomials, Stirling numbers of the second kind and Carlitz’s degenerate Bernoulli or degenerate Euler polynomials. In addition, we obtain an identity connecting the degenerate Bell polynomials, Cauchy polynomials, Bernoulli numbers, Stirling numbers of the second kind and degenerate Stirling numbers of the second kind.


Sign in / Sign up

Export Citation Format

Share Document