exponential generating function
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 56 (2) ◽  
pp. 195-223
Author(s):  
Igoris Belovas ◽  

The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays, defined by a bivariate linear recurrence with bivariate linear coefficients. We obtain the partial differential equation and special analytical expressions for the numbers using a semi-exponential generating function. We apply the results to prove the asymptotic normality of special classes of the numbers and specify the convergence rate to the limiting distribution. We demonstrate that the limiting distribution is not always Gaussian.


2021 ◽  
Vol 358 (9-10) ◽  
pp. 1005-1009
Author(s):  
Alin Bostan ◽  
Antonio Jiménez-Pastor

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 131
Author(s):  
Aleksandr Zemlyanukhin ◽  
Andrey Bochkarev

We investigated an integrable five-point differential-difference equation called the discrete Sawada–Kotera equation. On the basis of the geometric series method, a new exact soliton-like solution of the equation is obtained that propagates with positive or negative phase velocity. In terms of the Jacobi elliptic function, a class of new exact periodic solutions is constructed, in particular stationary ones. Using an exponential generating function for Catalan numbers, Cauchy’s problem with the initial condition in the form of a step is solved. As a result of numerical simulation, the elasticity of the interaction of exact localized solutions is established.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wiyada Kumam ◽  
Hari Mohan Srivastava ◽  
Shahid Ahmad Wani ◽  
Serkan Araci ◽  
Poom Kumam

AbstractIn this paper, we first introduce a new family of polynomials, which are called the truncated-exponential based Frobenius–Euler polynomials, based upon an exponential generating function. By making use of this exponential generating function, we obtain their several new properties and explicit summation formulas. Finally, we consider the truncated-exponential based Apostol-type Frobenius–Euler polynomials and their quasi-monomial properties.


10.37236/8413 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Jordan O. Tirrell ◽  
Yan Zhuang

We prove various formulas which express exponential generating functions counting permutations by the peak number, valley number, double ascent number, and double descent number statistics in terms of the exponential generating function for Chebyshev polynomials, as well as cyclic analogues of these formulas for derangements. We give several applications of these results, including formulas for the (-1)-evaluation of some of these distributions. Our proofs are combinatorial and involve the use of monomino-domino tilings, the modified Foata-Strehl action (a.k.a. valley-hopping), and a cyclic analogue of this action due to Sun and Wang.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 62 ◽  
Author(s):  
Maxie D. Schmidt

The purpose of this note is to provide an expository introduction to some more curious integral formulas and transformations involving generating functions. We seek to generalize these results and integral representations which effectively provide a mechanism for converting between a sequence’s ordinary and exponential generating function (OGF and EGF, respectively) and vice versa. The Laplace transform provides an integral formula for the EGF-to-OGF transformation, where the reverse OGF-to-EGF operation requires more careful integration techniques. We prove two variants of the OGF-to-EGF transformation integrals from the Hankel loop contour for the reciprocal gamma function and from Fourier series expansions of integral representations for the Hadamard product of two generating functions, respectively. We also suggest several generalizations of these integral formulas and provide new examples along the way.


2019 ◽  
Vol 13 (2) ◽  
pp. 378-398
Author(s):  
Toufik Mansour ◽  
José Ramírez ◽  
Mark Shattuck ◽  
Sergio Villamaríín

In this paper, we study further properties of a recently introduced generalized Eulerian number, denoted by Am,r(n, k), which reduces to the classical Eulerian number when m = 1 and r = 0. Among our results is a generalization of an earlier symmetric Eulerian number identity of Chung, Graham and Knuth. Using the row generating function for Am,r(n, k) for a fixed n, we introduce the r-Whitney-Euler-Frobenius fractions, which generalize the Euler-Frobenius fractions. Finally, we consider a further four-parameter combinatorial generalization of Am,r(n, k) and find a formula for its exponential generating function in terms of the Lambert-W function.


2018 ◽  
Vol 556 ◽  
pp. 381-399 ◽  
Author(s):  
Francesca Arrigo ◽  
Peter Grindrod ◽  
Desmond J. Higham ◽  
Vanni Noferini

2018 ◽  
Vol 68 (4) ◽  
pp. 727-740 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

Abstract In this paper, we consider a polynomial generalization, denoted by $\begin{array}{} u_m^{a,b} \end{array}$ (n, k), of the restricted Stirling numbers of the first and second kind, which reduces to these numbers when a = 1 and b = 0 or when a = 0 and b = 1, respectively. If a = b = 1, then $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) gives the cardinality of the set of Lah distributions on n distinct objects in which no block has cardinality exceeding m with k blocks altogether. We derive several combinatorial properties satisfied by $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) and some additional properties in the case when a = b = 1. Our results not only generalize previous formulas found for the restricted Stirling numbers of both kinds but also yield apparently new formulas for these numbers in several cases. Finally, an exponential generating function formula is derived for $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) as well as for the associated Cauchy numbers.


Sign in / Sign up

Export Citation Format

Share Document