scholarly journals Global exponential stability of Clifford-valued neural networks with time-varying delays and impulsive effects

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
G. Rajchakit ◽  
R. Sriraman ◽  
N. Boonsatit ◽  
P. Hammachukiattikul ◽  
C. P. Lim ◽  
...  

AbstractIn this study, we investigate the global exponential stability of Clifford-valued neural network (NN) models with impulsive effects and time-varying delays. By taking impulsive effects into consideration, we firstly establish a Clifford-valued NN model with time-varying delays. The considered model encompasses real-valued, complex-valued, and quaternion-valued NNs as special cases. In order to avoid the issue of non-commutativity of the multiplication of Clifford numbers, we divide the original n-dimensional Clifford-valued model into $2^{m}n$ 2 m n -dimensional real-valued models. Then we adopt the Lyapunov–Krasovskii functional and linear matrix inequality techniques to formulate new sufficient conditions pertaining to the global exponential stability of the considered NN model. Through numerical simulation, we show the applicability of the results, along with the associated analysis and discussion.

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Xinsong Yang ◽  
Jinde Cao ◽  
Chuangxia Huang ◽  
Yao Long

By using the Leray-Schauder fixed point theorem and differential inequality techniques, several new sufficient conditions are obtained for the existence and global exponential stability of almost periodic solutions for shunting inhibitory cellular neural networks with discrete and distributed delays. The model in this paper possesses two characters: nonlinear behaved functions and all coefficients are time varying. Hence, our model is general and applicable to many known models. Moreover, our main results are also general and can be easily deduced to many simple cases, including some existing results. An example and its simulation are employed to illustrate our feasible results.


2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Xinsong Yang

By using the coincidence degree theorem and differential inequality techniques, sufficient conditions are obtained for the existence and global exponential stability of periodic solutions for general neural networks with time-varying (including bounded and unbounded) delays. Some known results are improved and some new results are obtained. An example is employed to illustrate our feasible results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
G. Rajchakit ◽  
R. Sriraman ◽  
N. Boonsatit ◽  
P. Hammachukiattikul ◽  
C. P. Lim ◽  
...  

AbstractThis paper considers the Clifford-valued recurrent neural network (RNN) models, as an augmentation of real-valued, complex-valued, and quaternion-valued neural network models, and investigates their global exponential stability in the Lagrange sense. In order to address the issue of non-commutative multiplication with respect to Clifford numbers, we divide the original n-dimensional Clifford-valued RNN model into $2^{m}n$ 2 m n real-valued models. On the basis of Lyapunov stability theory and some analytical techniques, several sufficient conditions are obtained for the considered Clifford-valued RNN models to achieve global exponential stability according to the Lagrange sense. Two examples are presented to illustrate the applicability of the main results, along with a discussion on the implications.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weiyi Hu ◽  
Kelin Li

In this paper, we investigate the global exponential stability and periodicity of nonautonomous cellular neural networks with reaction-diffusion, impulses, and time-varying delays. By establishing a new differential inequality for nonautonomous systems, using the properties of M-matrix and inequality techniques, some new sufficient conditions for the global exponential stability of the system are obtained. Moreover, sufficient conditions for the periodic solutions of the system are obtained by using the Poincare mapping and the fixed point theory. The validity and superiority of the main results are verified by numerical examples and simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yingwei Li

The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs), by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


Sign in / Sign up

Export Citation Format

Share Document