scholarly journals Ulam–Hyers–Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

AbstractThis study is aimed to investigate the sufficient conditions of the existence of unique solutions and the Ulam–Hyers–Mittag-Leffler (UHML) stability for a tripled system of weighted generalized Caputo fractional derivatives investigated by Jarad et al. (Fractals 28:2040011 2020) in the frame of Chebyshev and Bielecki norms with time delay. The acquired results are obtained by using Banach fixed point theorems and the Picard operator (PO) method. Finally, a pertinent example of the results obtained is demonstrated.

2021 ◽  
Vol 7 (2) ◽  
pp. 2001-2018
Author(s):  
Mdi Begum Jeelani ◽  
◽  
Abeer S. Alnahdi ◽  
Mohammed A. Almalahi ◽  
Mohammed S. Abdo ◽  
...  

<abstract><p>We devote our interest in this work to investigate the sufficient conditions for the existence, uniqueness, and Ulam-Hyers stability of solutions for a new fractional system in the frame of Atangana-Baleanu-Caputo fractional operator with multi-parameters Mittag-Leffler kernels investigated lately by Abdeljawad (Chaos: An Interdisciplinary J. Nonlinear Sci. Vol. 29, no. 2, (2019): 023102). Moreover, the continuous dependence of solution and $ \delta $-approximate solutions are analyzed to such a system. Our approach is based on Banach's and Schaefer's fixed point theorems and some mathematical techniques. In order to illustrate the validity of our results, an example is given.</p></abstract>


Author(s):  
Yuji Liu

AbstractSufficient conditions are given for the existence of solutions of anti-periodic value problems for impulsive fractional differential systems involving both Caputo and Riemann–Liouville fractional derivatives. We allow the nonlinearities$p(t)f(t,x,y,z,w)$and$q(t)g(t,x,y,z,w)$in fractional differential equations to be singular at$t=0$and$t=1$. Both$f$and$g$may be super-linear and sub-linear. The analysis relies on some well known fixed point theorems. The initial value problem discussed may be seen as a generalization of some ecological models. An example is given to illustrate the efficiency of the main theorems. Many unsuitable lemmas in recent published papers are pointed out in order not to mislead readers. A conclusion section is given at the end of the paper.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. M. Matar ◽  
M. I. Abbas ◽  
J. Alzabut ◽  
M. K. A. Kaabar ◽  
S. Etemad ◽  
...  

AbstractA newly proposed p-Laplacian nonperiodic boundary value problem is studied in this research paper in the form of generalized Caputo fractional derivatives. The existence and uniqueness of solutions are fully investigated for this problem using some fixed point theorems such as Banach and Schauder. This work is supported with an example to apply all obtained new results and validate their applicability.


Author(s):  
Lingling Zhang ◽  
Nan Zhang ◽  
Bibo Zhou

Abstract In this note, the main emphasis is to study two kinds of high-order fractional p-Laplacian differential equations with mixed derivatives, which include Caputo type and Riemann–Liouville type fractional derivative. Based on fixed point theorems on the cone, the existence-uniqueness of positive solutions for equations and two iterative schemes to uniformly approximate the unique solutions are discussed theoretically. What’s more, the sufficient conditions for stability of the equations are given. Some exact examples are further provided to verify the analytical results at the end of the article.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1431
Author(s):  
Bilal Basti ◽  
Nacereddine Hammami ◽  
Imadeddine Berrabah ◽  
Farid Nouioua ◽  
Rabah Djemiat ◽  
...  

This paper discusses and provides some analytical studies for a modified fractional-order SIRD mathematical model of the COVID-19 epidemic in the sense of the Caputo–Katugampola fractional derivative that allows treating of the biological models of infectious diseases and unifies the Hadamard and Caputo fractional derivatives into a single form. By considering the vaccine parameter of the suspected population, we compute and derive several stability results based on some symmetrical parameters that satisfy some conditions that prevent the pandemic. The paper also investigates the problem of the existence and uniqueness of solutions for the modified SIRD model. It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 501
Author(s):  
Ahmed Boudaoui ◽  
Khadidja Mebarki ◽  
Wasfi Shatanawi ◽  
Kamaleldin Abodayeh

In this article, we employ the notion of coupled fixed points on a complete b-metric space endowed with a graph to give sufficient conditions to guarantee a solution of system of differential equations with impulse effects. We derive recisely some new coupled fixed point theorems under some conditions and then apply our results to achieve our goal.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Zhenhua Ma ◽  
Muhammad Nazam ◽  
Sami Ullah Khan ◽  
Xiangling Li

We study the sufficient conditions for the existence of a unique common fixed point of generalized αs-ψ-Geraghty contractions in an αs-complete partial b-metric space. We give an example in support of our findings. Our work generalizes many existing results in the literature. As an application of our findings we demonstrate the existence of the solution of the system of elliptic boundary value problems.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1084 ◽  
Author(s):  
Bashir Ahmad ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas ◽  
Hamed H. Al-Sulami

We prove the existence of solutions for neutral functional differential inclusions involving Hadamard fractional derivatives by applying several fixed point theorems for multivalued maps. We also construct examples for illustrating the obtained results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
N. I. Mahmudov ◽  
S. Unul

Existence and uniqueness of solutions forα∈(2,3]order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document