scholarly journals Hybrid algorithm for common solution of monotone inclusion problem and fixed point problem and applications to variational inequalities

SpringerPlus ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Jingling Zhang ◽  
Nan Jiang
2021 ◽  
Vol 40 (2) ◽  
pp. 525-559
Author(s):  
Chinedu Izuchukwu ◽  
Godwin C. Ugwunnadi ◽  
Oluwatosin Temitope Mewomo

In this paper, we introduce a modified Ishikawa-type proximal point algorithm for approximating a common solution of minimization problem, monotone inclusion problem and fixed point problem. We obtain a strong convergence of the proposed algorithm to a common solution of finite family of minimization problem, finite family of monotone inclusion problem and fixed point problem for asymptotically demicontractive mapping in Hadamard spaces. Numerical example is given to illustrate the applicability of our main result. Our results complement and extend some recent results in literature.


Analysis ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 19-37 ◽  
Author(s):  
Kazeem O. Aremu ◽  
Hammed Abass ◽  
Chinedu Izuchukwu ◽  
Oluwatosin T. Mewomo

AbstractIn this paper, we propose a viscosity-type algorithm to approximate a common solution of a monotone inclusion problem, a minimization problem and a fixed point problem for an infinitely countable family of {(f,g)}-generalized k-strictly pseudononspreading mappings in a {\mathrm{CAT}(0)} space. We obtain a strong convergence of the proposed algorithm to the aforementioned problems in a complete {\mathrm{CAT}(0)} space. Furthermore, we give an application of our result to a nonlinear Volterra integral equation and a numerical example to support our main result. Our results complement and extend many recent results in literature.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 187
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.


Author(s):  
C. Izuchukwu ◽  
F. O. Isiogugu ◽  
C. C. Okeke

Abstract In this paper, we introduce a new viscosity-type iteration process for approximating a common solution of a finite family of split variational inclusion problem and fixed point problem. We prove that the proposed algorithm converges strongly to a common solution of a finite family of split variational inclusion problems and fixed point problem for a finite family of type-one demicontractive mappings between a Hilbert space and a Banach space. Furthermore, we applied our results to study a finite family of split convex minimization problems, and also considered a numerical experiment of our results to further illustrate its applicability. Our results extend and improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13:759–775, 2012), Kazmi and Rizvi (Optim. Lett. 8(3):1113–1124, 2014), Moudafi (J. Optim. Theory Appl. 150:275–283, 2011), Shehu and Ogbuisi (Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 110(2):503–518, 2016), Takahashi and Yao (Fixed Point Theory Appl. 2015:87, 2015), Chidume and Ezeora (Fixed Point Theory Appl. 2014:111, 2014), and a host of other important results in this direction.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Long He ◽  
Yun-Ling Cui ◽  
Lu-Chuan Ceng ◽  
Tu-Yan Zhao ◽  
Dan-Qiong Wang ◽  
...  

AbstractIn a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.


Sign in / Sign up

Export Citation Format

Share Document