scholarly journals Double defects-induced elastic wave coupling and energy localization in a phononic crystal

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Soo-Ho Jo ◽  
Yong Chang Shin ◽  
Wonjae Choi ◽  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
...  

AbstractThis study aims to investigate elastic wave localization that leverages defect band splitting in a phononic crystal with double defects through in-depth analysis of comparison of numerical and experimental results. When more than one defect is created inside a phononic crystal, these defects can interact with each other, resulting in a distinctive physical phenomenon from a single defect case: defect band splitting. For a phononic crystal consisting of circular-hole type unit cells in a thin aluminum plate, under A0 (the lowest antisymmetric) Lamb waves, both numerical simulations and experiments successfully confirm the defect band splitting phenomenon via frequency response functions for the out-of-plane displacement calculated/measured at the double defects within a finite distance. Furthermore, experimental visualization of in-phase and out-of-phase defect mode shapes at each frequency of the split defect bands is achieved and found to be in excellent agreement with the simulated results. Different inter-distance combinations of the double defects reveal that the degree of the defect band splitting decreases with  the increasing distance due to weaker coupling between the defects. This work may shed light on engineering applications of a multiple-defect-introduced phononic crystal, including broadband energy harvesting, frequency detectors, and elastic wireless power transfer.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Soo-Ho Jo ◽  
Byeng D. Youn

Several previous studies have been dedicated to incorporating double defect modes of a phononic crystal (PnC) into piezoelectric energy harvesting (PEH) systems to broaden the bandwidth. However, these prior studies are limited to examining an identical configuration of the double defects. Therefore, this paper aims to propose a new design concept for PnCs that examines differently configured double defects for broadband elastic wave energy localization and harvesting. For example, a square-pillar-type unit cell is considered and a defect is considered to be a structure where one piezoelectric patch is bonded to a host square lattice in the absence of a pillar. When the double defects introduced in a PnC are sufficiently distant from each other to implement decoupling behaviors, each defect oscillates like a single independent defect. Here, by differentiating the geometric dimensions of two piezoelectric patches, the defects’ dissimilar equivalent inertia and stiffness contribute to individually manipulating defect bands that correspond to each defect. Hence, with adequately designed piezoelectric patches that consider both the piezoelectric effects on shift patterns of defect bands and the characteristics for the output electric power obtained from a single-defect case, we can successfully localize and harvest the elastic wave energy transferred in broadband frequencies.


2020 ◽  
Vol 127 (16) ◽  
pp. 164901 ◽  
Author(s):  
Soo-Ho Jo ◽  
Heonjun Yoon ◽  
Yong Chang Shin ◽  
Miso Kim ◽  
Byeng D. Youn

2018 ◽  
Vol 12 (1) ◽  
pp. 017001 ◽  
Author(s):  
Aichao Yang ◽  
Caijiang Lu ◽  
Fayuan Wu ◽  
Yu Wu ◽  
Liang Zhu ◽  
...  

2014 ◽  
Vol 115 (5) ◽  
pp. 054907 ◽  
Author(s):  
Yinggang Li ◽  
Tianning Chen ◽  
Xiaopeng Wang ◽  
Kunpeng Yu ◽  
Weihua Chen

Author(s):  
Xian’e Yang ◽  
Jiahui Zhong ◽  
Jiawei Xiang

Abstract Phononic crystal (PnC) has been proved for its manipulation and amplification of elastic waves. Using this characteristic of PnC to assist energy harvesting has remarkable effect. Generally, defect occurs when unit cell in PnC is replaced by another cell with different geometric or material properties, the output electric power of piezoelectric energy harvesting (PEH) devices will be significantly enhanced. In this study, a cross hole-type PnC-assisted PEH device with a large-size defect is presented by replacing several adjacent multiple cells with other cells. It is found that multiple peak voltages can be created within BG and multimodal energy harvesting can be performed. Compared with the defect mode composed of a small-size defect, energy localization and amplification of the proposed PnC leads to substantially enhancement of harvesting power after tailoring geometric parameters of a PEH device. This work will be expected to design PnC-assisted PEH devices in a reasonable way.


2010 ◽  
Vol 97 (12) ◽  
pp. 121919 ◽  
Author(s):  
J. Pierre ◽  
O. Boyko ◽  
L. Belliard ◽  
J. O. Vasseur ◽  
B. Bonello

Sign in / Sign up

Export Citation Format

Share Document