negative refraction
Recently Published Documents


TOTAL DOCUMENTS

1093
(FIVE YEARS 106)

H-INDEX

67
(FIVE YEARS 7)

eLight ◽  
2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Dasol Lee ◽  
Sunae So ◽  
Guangwei Hu ◽  
Minkyung Kim ◽  
Trevon Badloe ◽  
...  

AbstractOptical metamaterials have presented an innovative method of manipulating light. Hyperbolic metamaterials have an extremely high anisotropy with a hyperbolic dispersion relation. They are able to support high-k modes and exhibit a high density of states which produce distinctive properties that have been exploited in various applications, such as super-resolution imaging, negative refraction, and enhanced emission control. Here, state-of-the-art hyperbolic metamaterials are reviewed, starting from the fundamental principles to applications of artificially structured hyperbolic media to suggest ways to fuse natural two-dimensional hyperbolic materials. The review concludes by indicating the current challenges and our vision for future applications of hyperbolic metamaterials.


Author(s):  
Shunzu Zhang ◽  
Shiwei Shu ◽  
Xiaohui Bian

Abstract This letter reports the design of a magneto-elastic metasurface composed of arrayed Terfenol-D pillars deposited on a homogeneous Aluminum plate, aiming to realize the tunability of flexural wave anomalous propagation without altering the structure. Considering the magneto-mechanical coupling of magnetostrictive materials, the phase shift and transmission of functional unit can be calculated. The anomalous refraction of incident flexural wave (i.e., negative refraction) can be accomplished by adjusting magnetic field and pre-stress properly, the refraction angle is remarkably affected by magnetic distribution. The proposed metasurface provides a method for flexible tunability of elastic wave in the fields of vibration/noise control.


2021 ◽  
Author(s):  
Wei Xiang Jiang ◽  
Zhong Lei Mei ◽  
Tie Jun Cui

Metamaterials, including their two-dimensional counterparts, are composed of subwavelength-scale artificial particles. These materials have novel electromagnetic properties, and can be artificially tailored for various applications. Based on metamaterials and metasurfaces, many abnormal physical phenomena have been realized, such as negative refraction, invisible cloaking, abnormal reflection and focusing, and many new functions and devices have been developed. The effective medium theory lays the foundation for design and application of metamaterials and metasurfaces, connecting metamaterials with real world applications. In this Element, the authors combine these essential ingredients, and aim to make this Element an access point to this field. To this end, they review classical theories for dielectric functions, effective medium theory, and effective parameter extraction of metamaterials, also introducing front edge technologies like metasurfaces with theories, methods, and potential applications. Energy densities are also included.


2021 ◽  
Vol 7 (50) ◽  
Author(s):  
Yihao Yang ◽  
Yong Ge ◽  
Rujiang Li ◽  
Xiao Lin ◽  
Ding Jia ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yehonatan Gelkop ◽  
Fabrizio Di Mei ◽  
Sagi Frishman ◽  
Yehudit Garcia ◽  
Ludovica Falsi ◽  
...  

AbstractA hyperbolic medium will transfer super-resolved optical waveforms with no distortion, support negative refraction, superlensing, and harbor nontrivial topological photonic phases. Evidence of hyperbolic effects is found in periodic and resonant systems for weakly diffracting beams, in metasurfaces, and even naturally in layered systems. At present, an actual hyperbolic propagation requires the use of metamaterials, a solution that is accompanied by constraints on wavelength, geometry, and considerable losses. We show how nonlinearity can transform a bulk KTN perovskite into a broadband 3D hyperbolic substance for visible light, manifesting negative refraction and superlensing at room-temperature. The phenomenon is a consequence of giant electro-optic response to the electric field generated by the thermal diffusion of photogenerated charges. Results open new scenarios in the exploration of enhanced light-matter interaction and in the design of broadband photonic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
François Legrand ◽  
Benoît Gérardin ◽  
François Bruno ◽  
Jérôme Laurent ◽  
Fabrice Lemoult ◽  
...  

AbstractWe report on experimental and numerical implementations of devices based on the negative refraction of elastic guided waves, the so-called Lamb waves. Consisting in plates of varying thickness, these devices rely on the concept of complementary media, where a particular layout of negative index media can cloak an object with its anti-object or trap waves around a negative corner. The diffraction cancellation operated by negative refraction is investigated by means of laser ultrasound experiments. However, unlike original theoretical predictions, these intriguing wave phenomena remain, nevertheless, limited to the propagating component of the wave-field. To go beyond the diffraction limit, negative refraction is combined with the concept of metalens, a device converting the evanescent components of an object into propagating waves. The transport of an evanescent wave-field is then possible from an object plane to a far-field imaging plane. Twenty years after Pendry’s initial proposal, this work thus paves the way towards an elastic superlens.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yi Liu ◽  
Chunmei Ouyang ◽  
Quan Xu ◽  
Xiaoqiang Su ◽  
Jiajun Ma ◽  
...  

Abstract Hyperbolic metasurfaces with unique dispersion properties can manipulate light–matter interactions according to the demands. However, due to their inherent physical properties, topological transitions (flat bands) exist only in the orthogonal directions, which greatly limit their application. Here, we unveil rich dispersion engineering and topological transitions in hyperbolic metasurfaces. Based on the effective medium theory, the rotation matrix is introduced into the dispersion relation to explain the distorted energy band diagrams, iso-frequency contours and higher-order multi-dipoles of the novel twisted metasurfaces, thereby forming multi-directional topological transitions and surface plasmon polariton propagation. Furthermore, we develop an integrated model to realize new dual-channel negative refraction and nondiffraction negative refraction. The phenomena observed in the experiments match well with the simulations, which proves that the designed metasurfaces make new types of negative refraction possible and will help to overcome the diffraction limit. The hyperbolic metasurfaces presented here exhibit exceptional capabilities for designing microscopes with a super lens at the molecular level, concealment of military aircraft, invisibility cloaks and other photonic devices with higher transmission efficiency.


Sign in / Sign up

Export Citation Format

Share Document