scholarly journals Genetic variability for yield and fiber related traits in genetically modified cotton

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Adeela SAHAR ◽  
Muhammad Mubashar ZAFAR ◽  
Abdul RAZZAQ ◽  
Abdul MANAN ◽  
Muhammad HAROON ◽  
...  

Abstract Background Cotton (Gossypium hirsutum L.) is grown for fiber and oil purposes in tropical and sub-tropical areas of the world. Pakistan is the 4th largest producer of cotton. It has a significant contribution in the GDP of Pakistan. Therefore, the present study was performed to assess the genetic variations and genetic diversity of yield and fiber quality traits in cotton and to analyze the associations present among them. Results Analysis of variance exhibited significant variation for all studied traits except total number of nodes and the height to node ratio. The phenotypic coefficient of variation was higher than the genotypic coefficient of variation for all studied traits. Plant height, monopodial branches, total number of bolls, lint index, seed index, and seed cotton yield displayed high heritabilities in a broad sense with maximum genetic advance. Correlation analysis revealed that seed cotton yield had a significant positive association with plant height, the number of monopodial branches, the number of sympodial branches, ginning outturn (GOT), the number of bolls, seed per boll, seed index, uniformity index, the number of sympodial branches, reflectance, and seed index at the genotypic level while a significant positive relationship was observed with plant height, the number of sympodial branches, boll number, and GOT. Plant height, monopodial branches, GOT, boll weight, seeds per boll, and short fiber index exerted direct positive effects on seed cotton yield. The first 6 principal component analysis (PCs) out of the total fourteen PCs displayed eigenvalues (> 1) and had maximum share to total variability (82.79%). The attributes that had maximum share to total divergence included plant height, uniformity index, the number of sympodial branches, seed per boll, GOT, seed cotton yield, and short fiber index. Conclusion The genotype AA-802, IUB-13, FH-159, FH-458, and CIM-595 were genetically diverse for most of the yield and fiber quality traits and could be utilized for the selection of better performing genotypes for further improvement.

2015 ◽  
Vol 10 (1) ◽  
pp. 313-317
Author(s):  
Bangaremma Wadeyar ◽  
T Kajjidoni

Two hundred and two progenies were evaluated at two locations viz., Agricultural Research Station, Annigeri and Main Agricultural Research Station, Dharwad to estimate genetic variability and to identify superior progenies for seed cotton yield, yield contributing and fibre quality traits. The analysis of variance revealed presence of sufficient variability in the material for seven traits at both locations. High phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were recorded for number of bolls per plant and seed cotton yield per plant, while, moderate variability estimate was recorded for plant height and low PCV and GCV were noticed for boll weight, ginning out turn, seed index and lint index traits at both the locations. High heritability was observed for seed index exhibited 97 per cent with moderate genetic advance as percent mean (GAM) at both the locations. High GAM was observed for number of bolls per plant, seed cotton yield and plant height. Moderate GAM was noticed for boll weight and seed index traits at both locations. An attempt was made to identify superior progenies, maximum number of superior progenies were observed for seed cotton yield at Dharwad (33 progenies) followed by Annigeri (24 progenies).


Author(s):  
B. Srinivas ◽  
D. Bhadru

The present study was performed to evaluate the heterosis effects for seed cotton yield and fiber quality traits of 56 hybrids and their parents involving seven lines and eight testers along with a check at Acharya N.G. Ranga Agricultural University, Hyderabad. The results showed that, range of relative heterosis varied from -3.40 to 13.29 in ginning percentage, -5.28 to 14.10 in 2.5% span length, -8.72 to 8.25 in uniformity ratio, -16.39 to 14.88 in micronaire value, -5.97 to 10.02 in bundle strength and -32.57 to 113.40 in seed cotton yield per plant, where, highest number of crosses (24) with significant mid parental heterosis in desirable direction was observed for seed cotton yield per plant followed by 2.5 % span length (16) and ginning percentage (12). Desirable and significant heterosis over better parent was observed in the crosses for all the studied characters except for uniformity ratio. A good number of crosses recorded significant standard heterosis over check for all the studied parameters except for uniformity ration and micronaire value. Apart from showing considerable level of heterosis for seed cotton yield, the crosses AKH 9331 x HAG 1055 exhibited good level of heterosis for ginning percentage, Galama x L 604 and Galama x JK 344 for uniformity ratio, Galama x HAG 1055, AKH 9331 x HAG 1055 and CPD 420 x IC 356932 for 2.5% span length and CPD 420 x JK 344 and BC 68-2 x LK 861 for bundle strength. So these crosses could be exploited to improve the yield along with one or more fiber quality traits through heterosis breeding.


Author(s):  
Z. A. Deho ◽  
S. Abro ◽  
M. Rizwan

Eight mutant lines developed through mutation breeding technique using chemical mutagen along with parent line (Sadori) were evaluated at NIA, experimental farm. Quantitative and qualitative traits were analyzed statistically. The chemical mutagen Ethyle Methane Sulphonate (EMS) was used at the rate of 0.03%. The mutant lines (viz. NIA-M5, NIA-M10, NIA-M16, NIA-M20, NIA-M23, NIA-M29, NIA-M33 and NIA-M35) with parent Sadori were included in this study. The results revealed that three mutants (NIA-M20, NIA-M35 and NIA-M5) took (7.2%, 8.1% and 8.1%) higher plant height than parent (111 cm), two mutants (NIA-M5 and NIA-M20) obtained (36.8% and 42.1%) more sympodial branches plant-1 than parent (19.0). Three mutants (NIA-M20, NIA-M5 and NIA-M10) produced (16.8%, 22.4.0% and 25.4%) more number of bolls plant-1 than parental line (67.0). Five mutants (NIA-M5, NIA-M35, NIA-M20, NIA-M23 and NIA-M29) had higher fiber length (mm) (10.2%, 8%, 5.7%, 5% and 4.0%) as compared parent Sadori (28.0 mm). Two mutants (NIA-M20 and NIA-M29) showed higher fiber strength (g/tex) (5.5% and 8.3%) than parent (34.4%). Two mutants (NIA-M5 and NIA-M20) produced higher seed-cotton yield kg ha-1 (24.0% and 25.4%) over parent Sadori (3563 kg ha-1). The selected mutant lines on the basis of higher seed-cotton yield (kg ha-1) and enhanced fiber length (mm) compared to parent (Sadori) will be promoted in preliminary yield trials. Heritability and genetic advance were noted for early days to maturity, higher plant height (cm), sympodial branches plant-1, lengthy fiber (mm), bolls plant-1 and seed-cotton yield (kg ha-1).


2020 ◽  
Author(s):  
Abdul Rehman ◽  
Nida Mustafa ◽  
Du Xiongming ◽  
Muhammad Tehseen Azhar

Abstract Background Cotton is known for its fiber and it is grown in tropical and sub-tropical areas of the world. It has a significant role in GDP of Pakistan. Therefore, present two years research was conducted to estimate heritability and association among various yield contributing parameters of cotton. The selected genotypes of cotton were hybridized in green house of the department. The F 0 cotton seed along with parents were planted in the field conditions during May, 2018. The sowing of this experiment was completed in three replications followed by RCBD. The data was recorded at maturity for various agronomic traits including plant height, number of bolls per plant, number of sympodial branches per plant, seed cotton yield, boll weight, seed index, ginning out turn, fiber length, fiber strength, and fiber fineness. Level of significance of data was computed by ANOVA to assess the difference among cotton genotypes which was used for estimation of heritability and correlation analysis among the related traits. Results Association analysis revealed that seed cotton yield had significant positive relationship with plant height, number of bolls per plant, number of sympodial branches per plant, ginning out turn, staple length and fiber strength. Staple length and fiber strength were negatively linked with each other. Estimates of heritability were high for all observed traits except number of sympodial branches per plant and boll weight. Conclusion The parent IUB-222 was found best for plant height, number of bolls per plant, boll weight, ginning out turn, seed cotton yield and seed index. NIAB-414 and VH-367 were identified best parents for fiber length, strength and fineness. Among crosses NIAB-414 × IUB-222 was best for number of bolls per plant, seed index, seed cotton yield and fiber fineness. Whereas, cross NIAB-414 × CIM-632 was good for plant height. The combination of A555 × CIM-632 was best for number of sympodial branches per plant, boll weight, fiber length and strength. VH-367 × CIM-632 proved best for ginning out turn. The correlation results from this study would be helpful to breed cotton cultivars with good yield and quality characters. Broad sense heritability was high for all of parameters which provides the strong evidence that selection in early generations can improve the performance of these traits.


2016 ◽  
Vol 8 (3) ◽  
pp. 106
Author(s):  
Habib R. Lakho ◽  
Ayaz A. Soomro ◽  
Muhammad A. R. Rashid ◽  
Shabana Memon

<p>The present investigation was aimed to determine the general combining ability of the parental lines and specific combining ability of the hybrids respectively and also heterotic effect of F<sub>1</sub> hybrids for some agro-economical traits in upland cotton. Five parent genotypes viz. NIAB-78, Chandi-95, Haridost, CRIS-134 and Shahbaz were used to generate ten F<sub>1</sub> hybrids through diallel mating design. The seeds of F<sub>1</sub> hybrids along with their parents were sown in Randomized Complete Block Design (RCBD) in three replications during 2009-10. All the traits showed highly significant variation and GCA and SCA variances were also significant for all the parameters studied. Among the parents, NIAB-78, Haridost and CRIS-134 were best general combiners for plant height, sympodial branches per plant, bolls per plant, boll weight, seed cotton yield per plant, GOT% and seed index. Cross NIAB-78×Chandi-95 was best specific combiner for plant height and bolls per plant and CRIS-134×Haridost for sympodial branches per plant. However, the hybrid Chandi-95×CRIS-134 proved best specific combiner for seed cotton yield per plant and GOT%, while NIAB-78×CRIS-134 gave maximum SCA effects for seed index.</p>


2017 ◽  
Vol 2 (02) ◽  
pp. 185-196
Author(s):  
Sukhdeep Singh Sivia ◽  
S. S. Siwach ◽  
O. Sangwan ◽  
Sunayana .

The cultivated Gossypium spp. represents the most important, natural fibre crop in the world. Breeding for high cotton yield is still the primary goal of cotton breeding programs, but improving fibre quality has become increasingly important. The enhancement of fibre quality traits like fibre length, strength, and fibre fineness is an essential requirement for the modern textile industry. The objective of this study was to facilitate the selection in cotton breeding program and estimate the general combining ability (GCA) of the parents and specific combining ability (SCA) of hybrids considered for the development of high yielding and better fiber quality in early generations. The study was carried out at cotton research area, CCS Haryana Agricultural University, Hisar (India) during 2014 and 2015 kharif season. Fifteen cotton lines (which have maximum diversity) and four testers (which are known as well adapted and high yielding) were crossed in a line x tester mating design in 2014. Nineteen genotypes and 60 F1 hybrids were planted in the randomized complete block design with three replications at the same experimental area in 2015. The ratio of δ2 GCA /δ2 SCA was less than unity for all the nine characters indicating preponderance of non-additive gene action (dominance and epistasis), which is an important in exploitation of heterosis through hybrid breeding. The best general combining ability was detected from the parent H1470 for seed cotton yield, H1464 and H1098-i for fiber quality traits. SCA was significant for AC726 x H1236, ISR12 x H1226, HR1 x H1117 hybrid combinations for yield and fiber quality. The crosses H1470 x H1236 and H1470 x H1098-i were reported good heterosis for seed cotton yield as well as for fibre quality, selected the best hybrids were H1464 x H1098-i and H1463 x H1226. These cross combinations involved at least one parent with high or average GCA effect for a particular trait. The cross combination involving H1470, H1098-i and H1464 parents’ recorded significant positive heterosis with acceptable SCA effect for both yield and fibre quality parameters. This investigation concluded that the parents H1470, H1098-i and H1464 can be used in hybrid development programme with better fibre quality.


Sign in / Sign up

Export Citation Format

Share Document