scholarly journals Predicting wildfire impacts on the prehistoric archaeological record of the Jemez Mountains, New Mexico, USA

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Megan M. Friggens ◽  
Rachel A. Loehman ◽  
Connie I. Constan ◽  
Rebekah R. Kneifel

Abstract Background Wildfires of uncharacteristic severity, a consequence of climate changes and accumulated fuels, can cause amplified or novel impacts to archaeological resources. The archaeological record includes physical features associated with human activity; these exist within ecological landscapes and provide a unique long-term perspective on human–environment interactions. The potential for fire-caused damage to archaeological materials is of major concern because these resources are irreplaceable and non-renewable, have social or religious significance for living peoples, and are protected by an extensive body of legislation. Although previous studies have modeled ecological burn severity as a function of environmental setting and climate, the fidelity of these variables as predictors of archaeological fire effects has not been evaluated. This study, focused on prehistoric archaeological sites in a fire-prone and archaeologically rich landscape in the Jemez Mountains of New Mexico, USA, identified the environmental and climate variables that best predict observed fire severity and fire effects to archaeological features and artifacts. Results Machine learning models (Random Forest) indicate that topography and variables related to pre-fire weather and fuel condition are important predictors of fire effects and severity at archaeological sites. Fire effects were more likely to be present when fire-season weather was warmer and drier than average and within sites located in sloped, treed settings. Topographic predictors were highly important for distinguishing unburned, moderate, and high site burn severity as classified in post-fire archaeological assessments. High-severity impacts were more likely at archaeological sites with southern orientation or on warmer, steeper, slopes with less accumulated surface moisture, likely associated with lower fuel moistures and high potential for spreading fire. Conclusions Models for predicting where and when fires may negatively affect the archaeological record can be used to prioritize fuel treatments, inform fire management plans, and guide post-fire rehabilitation efforts, thus aiding in cultural resource preservation.

Author(s):  
Monica Turner ◽  
Robert Gardner ◽  
William Romme

The 1988 fires that burned in Yellowstone National Park presented ecologists with a unique opportunity to investigate ecological responses to large-scale fires (Christensen et al. 1989, Knight and Wallace 1989). The Yellowstone fires created an extremely heterogeneous landscape in terms of both the overall burning patterns and the variable fire severity within burned areas. Large fires rarely consume the entire forest because of the influence of wind variations, topography, vegetation type, natural fire breaks, and the time of day that the fire passed through (Rowe and Scotter 1973, Wright and Heinselman 1973, Van Wagner 1983). Direct fire effects such as tree mortality and organic matter consumption are related to locally variable parameters such as moisture content (Brown et al. 1985, Peterson and Ryan 1986, Ryan et al. 1988), and fire severity and return intervals are often strongly influenced by topographic and edaphic variability (Habeck and Mutch 1973, Romme and Knight 1981, Hemstrom and Franklin 1982, Whitney 1986). Therefore, burned landscapes generally contain areas of low as well as high intensity fire, usually in a complex mosaic (Van Wagner 1983). These variable fire intensities result in a heterogeneous pattern of burn severities (effects of fire on the ecosystem), as well as islands of unburned vegetation. The influence of burn severity on plant reestablishment following fire is well documented (e.g., Lyon and Stickney 1976, Rowe and Scotter 1973, Viereck 1983, Ryan and Noste 1985), and the importance of the effects of limited burns and low-intensity fires on the vegetation mosaic has been recognized (Habeck and Mutch 1973, Rowe 1983). However, few studies have dealt explicitly with the spatial variation of fire effects in a systematic and quantitative way.


2010 ◽  
Vol 19 (6) ◽  
pp. 710 ◽  
Author(s):  
Eva C. Karau ◽  
Robert E. Keane

Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in western Montana using 64 plots as field reference: (1) an image-based burn severity mapping approach using the Differenced Normalised Burn Ratio, and (2) a fire effects simulation approach using the FIREHARM model. The image-based approach was moderately correlated with percentage tree mortality but had no relationship with percentage fuel consumption, whereas the simulation approach was moderately correlated with percentage fuel consumption and weakly correlated with percentage tree mortality. Burn severity maps produced by the two approaches had mixed results among the four sampled wildfires. Both approaches had the same overall map agreement when compared with a sampled composite burn index but the approaches generated different severity maps. Though there are limitations to both approaches and more research is needed to refine methodologies, these techniques have the potential to be used synergistically to improve burn severity mapping capabilities of land managers, enabling them to quickly and effectively meet rehabilitation objectives.


Author(s):  
Timothy K. Perttula ◽  
Bo Nelson

Recent archaeological research on the Middle Caddoan period in Northeast Texas has made it abundantly clear that Middle Caddoan archaeological sites are much more common in the region than previously thought. Furthermore, with additional archaeological investigations, some radiocarbon dates, and a different perspectives on the regional archaeological record, a number of sites in the Sabine River drainage that used to be considered of Late Caddoan age are now more properly seen to be part of an intensive Middle Caddoan settlement of much of the basin. Truly, a broader and more complete view of the important Middle Caddoan period (ca. A.D. 1200-1400) in Northeast Texas looms before us. With the understanding of the Middle Caddoan period increasing anew through field investigations, as well as the synthetic efforts of the East Texas Caddoan Research Group, and the implications of new archaeological findings (such as the Oak Hill Village excavation) a further motivation for new archaeological research, documenting other Middle Caddoan sites remains important. That is the goal of this paper, namely to document an assemblage of lithic and ceramic artifacts from a late Middle Caddoan period component at the Coleman Farm site (41HS574) in Harrison County, Texas. The archaeological materials reported on here are from a surface collection made by Marshall Macintosh at the site in late 1994.


2020 ◽  
Author(s):  
Stav Livne-Luzon ◽  
Hagai Shemesh ◽  
Yagil Osem ◽  
Yohay Carmel ◽  
Hen Migael ◽  
...  

AbstractFire effects on ecosystems range from destruction of aboveground vegetation to direct and indirect effects on belowground microorganisms. Although variation in such effects is expected to be related to fire severity, another potentially important and poorly understood factor is the effects of fire seasonality on soil microorganisms. We carried out a large-scale field experiment examining the effects of spring versus autumn burns on the community composition of soil fungi in a typical Mediterranean woodland. Although the intensity and severity of our prescribed burns were largely consistent between the two burning seasons, we detected differential fire season effects on the composition of the soil fungal community, driven by changes in the saprotrophic fungal guild. The community composition of ectomycorrhizal fungi, assayed both in pine seedling bioassays and from soil sequencing, appeared to be resilient to the variation inflicted by seasonal fires. Since changes in the soil saprotrophic fungal community can directly influence carbon emission and decomposition rates, we suggest that regardless of their intensity and severity, seasonal fires may cause changes in ecosystem functioning.DeclarationsFundingThis research was co-supported by the United States-Israel Binational Science Foundation (BSF Grant 2012081) and Tel-Hai College.Conflicts of interest/Competing interestsWe declare no conflicts of interest and that this material has not been submitted for publication elsewhere.Ethics approvalNot applicableConsent to participateNot applicableConsent for publicationNot applicableAvailability of data and materialSequences were submitted to the National Center for Biotechnology Information Sequence Read Archive under accession numbers SRRXXX◻SRRXXX.Code availabilityNot applicableAuthors’ contributionsOO HS TB YO YC conceived and designed the experiment. SSL YA HM AT performed the experiment. SIG provided the pipeline scripts, and guidance in bioinformatics work and analyses. SLL OO HS wrote the paper and analyzed the data, and all authors contributed substantially to revisions.


Author(s):  
Hedvig Landenius Enegren

Textiles are perishables in the archaeological record unless specific environmental conditions are met. Fortunately, the textile tools used in their manufacture can provide a wealth of information and via experimental archaeology make visible to an extent what has been lost. The article presents and discusses the results obtained in a research project focused on textile tool technologies and identities in the context of settler and indigenous peoples, at select archaeological sites in South Italy and Sicily in the Archaic and Early Classical periods, with an emphasis on loom weights. Despite a common functional tool technology, the examined loom weights reveal an intriguing inter-site specificity, which, it is argued, is the result of hybrid expressions embedded in local traditions. Experimental archaeology testing is applied in the interpretation of the functional qualities of this common artefact.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


1983 ◽  
Vol 48 (3) ◽  
pp. 553-572 ◽  
Author(s):  
Peter M. Bowers ◽  
Robson Bonnichsen ◽  
David M. Hoch

Time lapse studies of frost action effects on arctic and subarctic surficial archaeological sites have been conducted from 1973 to the present. Test plots of experimentally produced flakes were constructed in 1973 in the Tangle Lakes Region of the Central Alaska Range and subsequently remapped and photographed in 1974, 1976, and 1980. Similar test plots were laid out in the arctic foothills province of the Brooks Range. Observations made during the study period include: (1) flake displacements of as much as 20 cm/yr; (2) average minimum movement is 4 cm/yr; and (3) upslope movements were observed, suggesting that slope is not the primary factor in flake displacements. Frost heave, needle ice and, possibly, wind appear to be the dominant forces responsible for dispersals. It is argued that these and other natural processes can restructure the archaeological record into patterns that easily can be mistaken for those produced by human activity.


2008 ◽  
Vol 69 (2) ◽  
pp. 263-275 ◽  
Author(s):  
R. Scott Anderson ◽  
Renata B. Jass ◽  
Jaime L. Toney ◽  
Craig D. Allen ◽  
Luz M. Cisneros-Dozal ◽  
...  

Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ13C andδ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.


Sign in / Sign up

Export Citation Format

Share Document