scholarly journals Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria

Author(s):  
Prakash Bhuyar ◽  
Mohd Hasbi Ab. Rahim ◽  
Sathyavathi Sundararaju ◽  
Rameshprabu Ramaraj ◽  
Gaanty Pragas Maniam ◽  
...  

Abstract Background Marine algae used as a food source for ocean life and range in color from red to green to brown grow along rocky shorelines around the world. The synthesis of silver nanoparticles by marine alga Padina sp. and its characterization were fulfilled by using UV-visible spectrophotometer, Fourier transform infrared spectroscopy, scanning electron microscopy and field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Results UV-visible absorption spectrum revealed that the formation of Ag nanoparticles was increased by the addition of marine algae and the spectral peak observed between a wavelength of ~ 420 nm and 445 nm. In addition, SEM and FESEM images examined the surface morphology and the size of the synthesized NPs was relatively uniform in size ~ 25–60 nm. Energy-dispersive X-ray spectroscopy analysis confirmed the purity of Ag NPs with atomic percentage of 48.34% Ag. The synthesized Ag NPs showed highly potent antibacterial activity. The Staphylococcus aureus and Pseudomonas aeruginosa were found to be more susceptible to silver nanoparticles by forming 15.17 ± 0.58 mm and 13.33 ± 0.76 mm of diameter of the inhibition zone, respectively. Conclusions The study suggested that marine alga Padina sp. could be an alternative source for the production of Ag nanoparticles and are efficient antimicrobial compounds against both gram-negative and gram-positive bacteria which can be a promising material against infectious bacteria.

2021 ◽  
Vol 41 (03) ◽  
pp. 393-399
Author(s):  
Parwin Jalal Jalil

Spillage of protoscoleces within hydatid fluid during surgery for hydatid cyst is the main reason for its recurrence. Therefore, to inactivate the protoscoleces, various scolicidal substances have been tested. However, novel and more efficient agents are needed owing to several associated complications. This study focused on the effects of green synthetic Silver Nanoparticles (AgNPs) from Zizyphus spina- christi leaves on Echinococcus granulosus protoscoleces. Also, to evaluate the blood compatibility of Ag NPs. The Ag NPs were identified by ultraviolet-visible (UV-Visible) spectrophotometer, X-ray diffraction (XRD), Scanning electron microscopy imaging, and Energy-dispersive X-ray spectroscopy (EDX). Hydatid fluid was aspirated aseptically from cysts of infected sheep liver. The protoscoleces were exposed to Ag NPs at several concentrations. Also, scanning electron microscopy for ultrastructural changes and in vitro erythrocytes lysis was performed. The Ag NPs were spherical; the particles' size reached 50 nm, and presented a surface plasmon peak around 460 nm. The current study's findings indicated the powerful in vitro scolicidal efficacy of the green biosynthesized AgNPs. Several morphological alterations were observed on the protoscoleces by optical and scanning electron microscopy. Lysis of RBCs at different doses of Ag NPs was significantly (P≤0.05) less than the positive control value, thus proposing its biocompatibility. This work suggests that chemicals like polyphenols present in the extract of Z. spina- christi act as reducing and stabilizers agents to create Ag NPs Nevertheless, further investigations are needed to investigate the Ag NPs scolicidial effects in animal models.


2021 ◽  
Vol 19 (50) ◽  
pp. 84-93
Author(s):  
Taqwa Yousif ◽  
Asama Naje

In this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy.  X-ray diffraction patterns of Ag NPs exhibited 2θ values (38.1°,44.3°) corresponding to the Ag nanocrystal, while the XRD pattern of MWCNTs and SWCNTs /Ag NPs peaks appeared at 2θ = 26.2° corresponding to the (002) and at 2theta=44° which corresponds with miller indices (100) for CNTs and (200) for Ag NPs. The optical properties measured by UV-Vis. Spectroscopy. Broad and strong surface plasmon resonance (SPR) peak was detected at 420 nm, for Ag NPs. The absorption of CNTs/Ag NPs increased significantly from UV to near IR region (300-1000 nm).  Ag NPs decorated CNTs without any impurities, according to field mission scanning electron microscopy examination, with typical particle sizes of (50-80nm) for Ag-NPs, 44nm for MWCNTs/Ag-NPs, and 30nm for SWCNTs/Ag NPs. ֹThe I-V characteristics at forward bias voltage (0.5-10) volt were studied. The figure of merits (responsivity, photocurrent gain, NEP and detectivity) after coating with polymer of the detector were measured in the dark and after illumination with UV LED (365 nm), Tungsten lamp (500-800 nm) and Laser diode (808 nm).


2018 ◽  
Vol 930 ◽  
pp. 224-229
Author(s):  
Marcos Antônio Guerra ◽  
Jeferson Prado Swerts ◽  
Mei Abe Funcia ◽  
Neide Aparecida Mariano ◽  
Maria Gabriela Nogueira Campos

Polyethylene terephthalate (PET) fiber is a very versatile fiber that can be produced with different properties, such as antimicrobial activity. This study aims to synthesize antimicrobial PET filaments incorporated with silver nanoparticles immobilized in silica (NPAg-Si) by bulk additive method. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) characterized the obtained filaments at concentrations (w/w) of 0.008%, 0.016%, 0.032%, 0.047% and 0.063% NPAg-Si, in order to identify the nanoparticles and analyze their dispersion in the polymeric matrix. Moreover, thermogravimetric analysis (TGA) was carry out to confirm the presence and concentration of the silver nanoparticles in the filaments as well as the thermal stability of the nanocomposites. The bulk addition method was efficient to produce PET-Silver filaments with silver nanoparticles homogeneously dispersed in the PET matrix.


2017 ◽  
Vol 41 (1) ◽  
pp. 60-65
Author(s):  
Ahmad N. A. Salih ◽  
Mohammad J. Eesa

     This study was conducted for the synthesis of silver nanoparticles by using olive leaves aqueous extract and evaluate its antibacterial activity against Pseudomonas aeruginosa in vitro. The synthesis and characterization of silver nanoparticles was confirmed by Ultra Violet Visible – spectrophotometer and Scanning Electron Microscopy. Well diffusion method was used to show the antibacterial action of silver nanoparticles against Pseudomonas aeruginosa in vitro in comparison with standard antibacterial silver sulfadiazine by using different concentrations of each agent ranged from 12.5-200 μg/ml. The results of this study showed it possible to produce silver nanoparticles in eco-friendly and easy process and UV-Visible absorption spectra of the silver nanoparticles revealed maximum absorbance at 420 and 430 nm. The Scanning Electron Microscopy analysis demonstrated the mean of the silver particles diameter was 26 nm. The antibacterial findings of the synthesized silver nanoparticles against Pseudomonas aeruginosa in vitro showed that the silver nanoparticles were more effective than silver sulfadiazine against Pseudomonas aeruginosa. It could be concluded that olive leaves extract can be used effectively in the production of silver nanoparticles and these synthesized nanoparticles had considerable antibacterial activity against Pseudomonas aeruginosa in vitro.                                                        


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Toga Khalid Mohamed ◽  
Marivt Osman Widdatallah ◽  
Maida Musa Ali ◽  
Afraa Mubarak Alhaj ◽  
DhiaEldin AbdElmagied Elhag

An extremely worrying and alarming increase in the level of multiple drug resistance is reported in Sudan, in which bacterial strains are becoming resistant to many commonly available antibiotics. Eventually, it is becoming extremely difficult to treat debilitating infections. In search of promising solutions to this arising crisis, Camellia sinensis silver nanoparticles were synthesized using the green synthesis method. The synthesis of the Camellia sinensis silver nanoparticles is confirmed using analytical methods as ultraviolet-visible spectroscopy, X-ray diffractometer, and scanning electron microscopy. Using the ultraviolet-visible spectroscopy, an absorption band of 412 nm was observed. Furthermore, scanning electron microscopy revealed the presence of silver nanoparticles which fell within the range of 1–100 nm, and X-ray diffractometer analysis showed three intense peaks with a maximum intense peak at 24.3 theta. Nanoparticles distribution between 12 nm and 64 nm was observed with an average diameter of 18.115 nm. It also revealed orthorhombic-shaped nanoparticles. The synthesized nanoparticles showed antimicrobial activity against Staphylococcus aureus with a zone of inhibition of 7 mm, but none was detected against Escherichia coli. The obtained physicochemical properties were correlated with the antibacterial activity of the silver nanoparticles.


2020 ◽  
Vol 10 (6) ◽  
pp. 7284-7294

Development of textiles functionalized with nanoparticles has received growing interest. A wide range of nanoparticles can be deposited on textile fibers, which brings new properties to the final product. Although many methods for the deposition of silver nanoparticles (AgNPs) on textiles are possible, the current trend focuses on how this can be carried out in a cheaper and greener manner. Therefore, the present study aims to propose a green method for the enhancement of antifungal of textiles using AgNPs. Textile properties such as surface morphology, elemental contents, density, water absorption, and antifungal capability were comprehensively characterized. This study found that the deposition of AgNPs on the textiles can be successfully carried out using the proposed method, confirmed by the field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX) inspections. The water absorption capability of the treated textiles was lower compared to untreated textiles. In addition, the effective antifungal capability of the treated textiles has been approved, although after 5 washing cycles.


2013 ◽  
Vol 700 ◽  
pp. 15-18
Author(s):  
Ai Hong Guo ◽  
Wen Bo Su ◽  
Chun Na Zhang ◽  
Feng Yuan

Prepare TiO2doped with ZnO or Fe2O3composite photocatalytic film by using sol-gel method and characterize its microstructure and light absorption performance with X-ray diffraction instrument (XRD), scanning electron microscopy (SEM) and UV-visible spectrophotometer. The results show that: particles of TiO2doped with Fe2O3composite photocatalytic film are uniform and well dispersed; the rough surface of the film has a certain gap which is helpful for the adhesion of gas and liquid; the diameter of the particles is about 50 nm. The crystal grain size of TiO2film doped with ZnO is bigger, about 100 nm; the gap of the film is less and particles are nearly spherical and protruding, the shape of grain is structured. The absorption spectrum of TiO2doped with ZnO or Fe2O3has a red shift and both of their absorption intensity is higher than that of pure TiO2film in the scope of the ultraviolet and visible region.


2019 ◽  
Vol 39 (3-4) ◽  
pp. 95-110 ◽  
Author(s):  
Nissapa Wattanawong ◽  
Kanchana Chatchaipaiboon ◽  
Natchanan Sreekirin ◽  
Duangdao Aht-Ong

Bacterial growth on food is a main factor in the reduction of food quality, leading to short-term food shelf life. Development of antibacterial packaging can inhibit the bacterial growth and extend food shelf life. Silver loaded zeolite was used as the antibacterial agent in this work. Three zeolites (different Si/Al ratio) such as zeolite A, zeolite Y, and zeolite Socony Mobil-5 (ZSM-5) incorporating with the same silver content were prepared. The characterization was carried out by energy dispersive X-ray spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, and color analysis. Antibacterial activity of the three silver zeolites was tested against Escherichia coli and Staphylococcus aureus. Silver loaded zeolite ZSM-5 showed better bacterial inhibition than silver incorporated zeolite A and Y. For composite film preparation, silver loaded zeolite ZSM-5/poly(butylene succinate) composite films were prepared by varying silver loaded zeolite ZSM-5 concentrations and characterized by different techniques (mechanical test, scanning electron microscopy, and color analysis). Poly(butylene succinate) composite films filled with silver loaded zeolite ZSM-5 showed 99.9% of bacterial reduction within 24 h, indicating the effective antibacterial activity. From the silver migration results, the silver release from poly(butylene succinate) films was less than the limitation of European Food Safety Authority regulation, indicating the safety for food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document