A test of a controlled downhole seismic source

Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1193-1198
Author(s):  
G. J. Elbring ◽  
H. C. Hardee ◽  
B. N. P. Paulsson

With the growing interest in borehole seismic investigations such as vertical seismic profiling and crosshole surveys, the need for new instrumentation has arisen, especially in the area of seismic sources. An ideal seismic downhole source should be nondestructive to the well, provide enough energy to be recorded at useful distances, produce a broad band of seismic frequencies, and create a reproducible signal. A prototype of a source that fits these requirements has been constructed and was described in a previous paper (Hardee et al., 1987).

Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 538 ◽  
Author(s):  
Marko Riedel ◽  
Calin Cosma ◽  
Nicoleta Enescu ◽  
Emilia Koivisto ◽  
Kari Komminaho ◽  
...  

Seismic reflection methods have been used for the exploration of mineral resources for several decades. However, despite their unmatched spatial resolution and depth penetration, they only have played a minor role in mineral discoveries so far. Instead, mining and exploration companies have traditionally focused more on the use of potential field, electric and electromagnetic methods. In this context, we present a case study of an underground Vertical Seismic Profiling (VSP) experiment, which was designed to image a (semi-)massive sulfide deposit located in the Kylylahti polymetallic mine in eastern Finland. For the measurement, we used a conventional VSP with three-component geophones and a novel fiber-optic Distributed Acoustic Sensing (DAS) system. Both systems were deployed in boreholes located nearby the target sulfide deposit, and used in combination with an active seismic source that was fired from within the underground tunnels. With this setup, we successfully recorded seismic reflections from the deposit and its nearby geological contrasts. The recording systems provided data with a good signal-to-noise ratio and high spatial resolution. In addition to the measurements, we generated a realistic synthetic dataset based on a detailed geological model derived from extensive drilling data and petrophysical laboratory analysis. Specific processing and imaging of the acquired and synthetic datasets yielded high-resolution reflectivity images. Joint analysis of these images and cross-validation with lithological logging data from 135 nearby boreholes led to successful interpretation of key geological contacts including the target sulfide mineralization. In conclusion, our experiment demonstrates the value of in-mine VSP measurements for detailed resource delineation in a complex geological setting. In particular, we emphasize the potential benefit of using fiber-optic DAS systems, which provide reflection data at sufficient quality with less logistical effort and a higher acquisition rate. This amounts to a lower total acquisition cost, which makes DAS a valuable tool for future mineral exploration activities.


2021 ◽  
Author(s):  
Rajeev Kumar ◽  
Pierre Bettinelli

Abstract During the evolution of the petroleum industry, surface seismic imaging has played a critical role in reservoir characterization. In the early days, borehole seismic (BHS) was developed to complement surface seismic. However, in the last few decades, a wide range of BHS surveys has been introduced to cater to new and unique objectives over the oilfield lifecycle. In the exploration phase, vertical seismic profiling (VSP) provides critical time-depth information to bridge time indexed subsurface images to log/reservoir properties in depth. This information can be obtained using several methods like conventional wireline checkshot or zero-offset vertical seismic profiling (ZVSP), seismic while drilling (SWD) or distributed acoustic sensing (DAS) techniques. SWD is a relatively new technique to record real-time data using tool deployed in the bottomhole assembly without disturbing the drilling. It helps to improve decision making for safer drilling especially in new areas in a cost-effective manner. Recently, a breakthrough technology, distributed acoustic sensing (DAS), has been introduced, where data are recorded using a fiber-optic cable with lots of saving. ZVSP also provides several parameters like, attenuation coefficient (Q), multiples prediction, impedance, reflectivity etc., which helps with characterizing the subsurface and seismic reprocessing. In the appraisal phase, BHS applications vary from velocity model update, anisotropy estimation, well- tie to imaging VSPs. The three-component VSP data is best suited for imaging and amplitude variation with offset (AVO) due to several factors like less noise interference due to quiet downhole environment, higher frequency bandwidth, proximity to the reflector, etc. Different type of VSP surveys (offset, walkaway, walkaround etc.) were designed to fulfill objectives like imaging, AVO, Q, anisotropy, and fracture mapping. In the development phase, high-resolution images (3D VSP, walkaway, or crosswell) from BHS surveys can assist with optimizing the drilling of new wells and, hence reduce costs. it can help with landing point selection, horizontal section placement, and refining interpretation for reserve calculation. BHS offers a wide range of surveys to assist the oilfield lifecycle during the production phase. Microseismic monitoring is an industry-known service to optimize hydraulic fracturing and is the only technique that captures the induced seismicity generated by hydraulic fracturing and estimate the fracture geometry (height, width, and azimuth) and in real time. During enhanced oil recovery (EOR) projects, BHS can be useful to optimize the hydrocarbon drainage strategies by mapping the fluid movement (CO2, water, steam) using time-lapse surveys like walkaway, 3D VSP and/or crosswell. DAS has brought a new dimension to provide vital information on injection or production evaluation, leak detection, flow behind tubing, crossflow diagnosis, and cement evaluation during production phase. This paper highlights the usage of BHS over the lifecycle of the oilfield.


GeoArabia ◽  
1996 ◽  
Vol 1 (4) ◽  
pp. 531-550
Author(s):  
Osman S. Khaled ◽  
Alaa M. Al-Ateeqi ◽  
Andrew R. James ◽  
Richard J. Meehan

ABSTRACT During early 1994, Kuwait Oil Company and Schlumberger completed an extensive study of the Seismic-While-Drilling technique in two development wells in the Raudhatain field of North Kuwait. Seismic-While-Drilling records the energy radiated from a working drillbit (utilized as a seismic source), with receivers placed at the surface. This technology provides well seismic information such as checkshot and look ahead Vertical Seismic Profiling services at the wellsite, in real-time. The technique does not interfere with the drilling process nor does it require deploying any downhole hardware. The result of the study is that the Seismic-While-Drilling technique can work successfully in the Raudhatain field.


Geophysics ◽  
1994 ◽  
Vol 59 (11) ◽  
pp. 1780-1785 ◽  
Author(s):  
Richard L. Gibson ◽  
Chengbin Peng

An accurate characterization of borehole seismic sources is necessary to model and interpret waveforms observed in crosshole and reverse vertical seismic profiling (VSP) surveys, since the radiation pattern of a source will directly influence the amplitudes of elastic wave arrivals at receiver locations. Any attempt to study these data or perform inversions of amplitude data without incorporating the borehole effects will have serious limitations. Most previous studies of borehole seismic source radiation patterns have applied low‐frequency approximations to develop expressions for the radiation patterns of volume injection or stress sources (Heelan, 1953; White, 1960; White and Senghush, 1963; Lee and Balch, 1982; Lee, 1986; Kurkjian, 1986; Meredith, 1990; Winbow, 1991; Ben‐Menahem and Kostek, 1991). For example, Lee and Balch (1982) used this approach, along with a steepest descent solution, to derive closed‐form analytic expressions for the asymptotic far‐field radiation from sources located in uncased boreholes. Meredith (1990) applied the same methodology to study the radiation patterns of a variety of types of sources, though he also computed full waveform synthetic seismograms using the discrete wavenumber method. Likewise, Greenfield (1978) used full waveform numerical solutions to compute seismograms for force sources applied to the wall of a cylindrical cavity.


Geophysics ◽  
1981 ◽  
Vol 46 (10) ◽  
pp. 1398-1414 ◽  
Author(s):  
Jerry M. Mendel ◽  
John Kormylo ◽  
Fereydoun Aminzadeh ◽  
Ja Sung Lee ◽  
Farroukh Habibi‐Ashrafi

This paper demonstrates some results obtained using state‐variable models and techniques on problems for which solutions either cannot be or are not easily obtained via more conventional input‐output techniques. After a brief introduction to state‐variable notions, the following seven problem areas are discussed: modeling seismic source wavelets, simultaneous deconvolution and correction for spherical divergence, simultaneous wavelet estimation and deconvolution, well log processing, design of recursive Wiener filters, Bremmer series decomposition of a seismogram (including suppression of multiples and vertical seismic profiling), and estimating reflection coefficients and traveltimes.


Geophysics ◽  
2005 ◽  
Vol 70 (2) ◽  
pp. F17-F25 ◽  
Author(s):  
Tommy Toverud ◽  
Bjørn Ursin

For seismic frequencies it is common to use an empirical equation to model attenuation. Usually the attenuation coefficient is modeled with linear frequency dependence, a model referred to as the Kolsky-Futterman model. Other models have been suggested in the geophysical literature. We compare eight of these models on a zero-offset vertical seismic profiling (VSP) data set: the Kolsky-Futterman, the power law, the Kjartansson, the Müller, the Azimi second, the Azimi third, the Cole-Cole, and the standard linear solid (SLS) models. For three separate depth zones we estimate velocities and Q-values for all eight models. A least-squares model-fitting algorithm gives almost the same normalized misfit for all models. Thus, none of the models can be preferred or rejected based on the given data set. Slightly better overall results are obtained for the Kolsky-Futterman model; for one depth zone, the SLS model gave the best result.


Sign in / Sign up

Export Citation Format

Share Document