scholarly journals Microseismic hydraulic fracture imaging in the Marcellus Shale using head waves

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. KS1-KS10 ◽  
Author(s):  
Zhishuai Zhang ◽  
James W. Rector ◽  
Michael J. Nava

We have studied microseismic data acquired from a geophone array deployed in the horizontal section of a well drilled in the Marcellus Shale near Susquehanna County, Pennsylvania. Head waves were used to improve event location accuracy as a substitution for the traditional P-wave polarization method. We identified that resonances due to poor geophone-to-borehole coupling hinder arrival-time picking and contaminate the microseismic data spectrum. The traditional method had substantially greater uncertainty in our data due to the large uncertainty in P-wave polarization direction estimation. We also identified the existence of prominent head waves in some of the data. These head waves are refractions from the interface between the Marcellus Shale and the underlying Onondaga Formation. The source location accuracy of the microseismic events can be significantly improved by using the P-, S-wave direct arrival times and the head wave arrival times. Based on the improvement, we have developed a new acquisition geometry and strategy that uses head waves to improve event location accuracy and reduce acquisition cost in situations such as the one encountered in our study.

Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC117-WC126 ◽  
Author(s):  
Davide Gei ◽  
Leo Eisner ◽  
Peter Suhadolc

Microseismic data recorded by surface monitoring arrays can be used to estimate the effective anisotropy of the overburden and reservoir. In this study we used the inversion of picked P-wave arrival times to estimate the Thomsen parameter [Formula: see text] and the anellipticity coefficient [Formula: see text]. This inversion employs an analytic equation of P-wave traveltimes as a function of offset in homogeneous, transversely isotropic media with a vertical axis of symmetry. We considered a star-like distribution of receivers and, for this geometry, we analyzed the sensitivity of the inversion method to picking noise and to uncertainties in the P-wave vertical velocity and source depth. Long offsets, as well as a high number of receivers per line, improve the estimation of [Formula: see text] and [Formula: see text] from noisy arrival times. However, if we do not use the correct value of the P-wave vertical velocity or source depth, the long-offset may increase the inaccuracy in the estimation of the anisotropic parameters. Such inaccuracy cannot be detected from time residuals. We also applied this inversion to field data acquired during the hydraulic fracturing of a gas shale reservoir and compared the results with the anisotropic parameters estimated from synthetic arrival times computed for an isotropic layered medium. The effective anisotropy from the inversion of the field data cannot be explained by layering only and is partially due to the intrinsic anisotropy of the reservoir and/or overburden. This study emphasizes the importance of using accurate values of the vertical velocity and source depth in the P-wave arrival time inversion for estimating anisotropic parameters from passive seismic data.


2020 ◽  
Author(s):  
Alessandro Caruso ◽  
Aldo Zollo ◽  
Simona Colombelli ◽  
Luca Elia ◽  
Grazia De Landro

<p>For network-based Earthquake Early Warning Systems (EEWS), the real-time earthquake location is crucial for a correct estimation of event location/magnitude and therefore, for a reliable prediction of the potential expected shaking at the target sites in terms of predicted maximum ground shaking. Different approaches have been recently proposed for the real-time location which mainly use absolute (or differential) P-wave travel times at a set of minimum available stations or measurement of the initial P-wave arrival time (Elarms, Presto, Horiuchi), polarization (Eiserman and Bock) or amplitude and time (Yamada). In this work, we propose a new method which is able to exploit the continuous, real-time information available from both time, amplitude and polarization of initial P-wave signals acquired by dense three component arrays deployed in the source zones. The methodology we propose is an evolutionary and Bayesian probabilistic technique that combines three different observed parameters: 1) the differential arrival times of P-waves (which are computed using a 1D velocity model for the estimation of the theoretical arrival times); 2) the differential P-wave amplitudes in terms of P-wave peak velocity) [reference]  (which are computed using an existing P-peak motion prediction equation) and 3) the real-time estimation of back-azimuthal direction, measured shortly after the P-wave arrival. These three parameters are measured in real-time and are used as prior and conditional information to estimate the posterior probability of the event location parameters, e.g. the hypocenter coordinates and the origin time. The method is evolutive, since it updates the location parameters as new data are acquired by more and more distant stations as the P-wavefront propagates across the network. The output is a multi-dimensional Probability Density Function (PDF), which contains the complete information about the maximum likelihood parameter estimation with their uncertainty. The method is computationally efficient and optimized for running in real-time applications, where the earthquake location has to be retrieved in a very short time window (around 1 sec) after data acquisition. We tested the proposed strategy on a sequence of 29 earthquakes of the 2016-2017 central Italy seismic sequence acquired by the RAN (Rete Accelerometrica Nazionale) network with a magnitude range of 4.2-6.5. For the testing phase, we also simulated non-optimal conditions in terms of source-to-receiver geometry. Specifically, we tested the method  by ssimulating the case of “offshore” earthquakes recorded by a coastal network and in the case of a linear “barrier-type” geometry of the network. Our approach turned out to be suitable to work in condition of a sparse network, with a limited number of nodes and poor azimuthal coverage. In most of the cases, reliable location errors, less than 10 km, are achieved within few seconds from the first recorded P wave. As compared to other classical location techniques (i.e RTLOC in PRESTo) our approach shows an improvement of the solutions, especially for the first instants (2 seconds after the first P-wave arrival at network) when a poor number of stations (less than 4) is available.</p>


Geophysics ◽  
1953 ◽  
Vol 18 (4) ◽  
pp. 871-893 ◽  
Author(s):  
Patrick A. Heelan

When a combined longitudinal and transverse disturbance, diverging from a localized source, strikes a plane boundary between two solid elastic media, several systems of head waves and second‐order boundary waves are generated, each associated with grazing incidence of one or the other of the reflected or refracted waves. Associated with grazing incidence of [Formula: see text], the refracted P‐wave, is the head wave system comprising [Formula: see text] (the “refracted wave” of seismic prospectors), and [Formula: see text] (a transverse head wave) in the upper medium, and [Formula: see text] (a transverse head wave) in the lower medium. There is no boundary wave in the lower medium. These three waves, with the second‐order term of [Formula: see text] (the first‐order term is zero on the boundary) satisfy conditions of continuity of stress and displacement at the boundary. Moreover, the energy of the three head waves is derived completely from the second‐order component of [Formula: see text], which possesses a component of energy flow normal to the boundary. The amplitudes of [Formula: see text] [Formula: see text] and [Formula: see text] are calculated for certain cases.


1992 ◽  
Vol 82 (6) ◽  
pp. 2494-2510
Author(s):  
H. R. Quin ◽  
C. H. Thurber

Abstract Three-component seismic data from a set of presumed explosions recorded by stations at Bayanaul and Karkaralinsk in Kazakhstan were analyzed in order to model the crustal structure of the region and to examine the use of the arrival times of secondary P phases, primarily PmP, in regional event location. Polarization analysis aided in the identification of the secondary phases. Low-pass filtered data (4-Hz corner) from the first 5 to 10 sec of 13 presumed explosions were modeled with the reflectivity method. The two chemical explosions in 1987 provided a check on accuracy, as their locations and origin times are accurately known. A good fit to the arrival times and amplitudes in the first 5 sec of the P wave (Pn, Pg, and PmP) was obtained in the epicentral distance range of 100 to 300 km. Beyond 300 km, the simple layered model was not adequate to model the PmP arrival. The crustal P-wave velocity model we derived has an upper crustal velocity increasing fairly rapidly from 4.5 km/sec near the surface to 6.5 km/sec at 15-km depth, then increasing more slowly to 7.05 km/sec at 50-km depth. The observed difference in the arrival times of the phases Pg, PmP, and Pn in the range between 100- and 250-km distance required a relatively sharp transition at the crust mantle boundary. The model is generally similar to previous estimates of P velocity structure in the region, though with a gentler gradient in the upper crust and a steeper gradient in the lower crust. We used the derived crustal model and the primary and secondary P-wave arrival times to relocate events in the Kazakhstan region. Inclusion of the phase PmP substantially decreases the focal depth uncertainty for many of the events. All but one of the events analyzed are concluded to be surface explosions; the identity of the remaining event is uncertain.


Geophysics ◽  
1996 ◽  
Vol 61 (5) ◽  
pp. 1453-1466 ◽  
Author(s):  
Hirokazu Moriya ◽  
Hiroaki Niitsuma

We have developed a signal processing technique for three‐component microseismic data that allows the precise determination of P‐wave arrival times. The method is based on a time‐frequency representation of the signal that allows the evaluation of the 3-D particle motion from seismic waves in both time and frequency domains. A spectral matrix is constructed using the time‐frequency distributions. A crosscorrelation coefficient for the three‐component signal is derived through eigenvalue analysis of the spectral matrix. The P‐wave arrival time is determined through a statistical test of hypotheses using the crosscorrelation coefficient. This signal processing method is evaluated using a synthetic signal and it is compared to the local stationary autoregressive method for determining P‐wave arrival times. We also show that the proposed method is capable of determining the arrival time of a synthetic P‐wave to within 1 ms (five points in the discrete time series) in the presence of a signal‐to‐noise ratio of −5dB. The method can detect the arrival time of different frequency components of the P‐wave, which is a possibility for the evaluation of velocity dispersion of the seismic wave. We demonstrate the feasibility of the method further by applying it to microseismic data from a geothermal field.


Geophysics ◽  
1963 ◽  
Vol 28 (4) ◽  
pp. 563-581 ◽  
Author(s):  
John W. Dunkin

The problem of transient wave propagation in a three‐layered, fluid or solid half‐plane is investigated with the point of view of determining the effect of refracting bed thickness on the character of the two‐dimensional head wave. The “ray‐theory” technique is used to obtain exact expressions for the vertical displacement at the surface caused by an impulsive line load. The impulsive solutions are convolved with a time function having the shape of one cycle of a sinusoid. The multiple reflections in the refracting bed are found to affect the head wave significantly. For thin refracting beds in the fluid half‐space the character of the head wave can be completely altered by the strong multiple reflections. In the solid half‐space the weaker multiple reflections affect both the rate of decay of the amplitude of the head wave with distance and the apparent velocity of the head wave by changing its shape. A comparison is made of the results for the solid half‐space with previously published results of model experiments.


1979 ◽  
Vol 16 (7) ◽  
pp. 1388-1401 ◽  
Author(s):  
Larry W. Marks ◽  
F. Hron

The classical problem of the incidence of spherical waves on a plane boundary has been reformulated from the computational point of view by providing a high frequency approximation to the exact solution applicable to any seismic body wave, regardless of the number of conversions or reflections from the bottoming interface. In our final expressions the ray amplitude of the interference reflected-head wave is cast in terms of a Weber function, the numerical values of which can be conveniently stored on a computer disk file and retrieved via direct access during an actual run. Our formulation also accounts for the increase of energy carried by multiple head waves arising during multiple reflections of the reflected wave from the bottoming interface. In this form our high frequency expression for the ray amplitude of the interference reflected-head wave can represent a complementary technique to asymptotic ray theory in the vicinity of critical regions where the latter cannot be used. Since numerical tests indicate that our method produces results very close to those obtained by the numerical integration of the exact solution, its combination with asymptotic ray theory yields a powerful technique for the speedy computation of synthetic seismograms for plane homogeneous layers.


Sign in / Sign up

Export Citation Format

Share Document