ON THE THEORY OF HEAD WAVES

Geophysics ◽  
1953 ◽  
Vol 18 (4) ◽  
pp. 871-893 ◽  
Author(s):  
Patrick A. Heelan

When a combined longitudinal and transverse disturbance, diverging from a localized source, strikes a plane boundary between two solid elastic media, several systems of head waves and second‐order boundary waves are generated, each associated with grazing incidence of one or the other of the reflected or refracted waves. Associated with grazing incidence of [Formula: see text], the refracted P‐wave, is the head wave system comprising [Formula: see text] (the “refracted wave” of seismic prospectors), and [Formula: see text] (a transverse head wave) in the upper medium, and [Formula: see text] (a transverse head wave) in the lower medium. There is no boundary wave in the lower medium. These three waves, with the second‐order term of [Formula: see text] (the first‐order term is zero on the boundary) satisfy conditions of continuity of stress and displacement at the boundary. Moreover, the energy of the three head waves is derived completely from the second‐order component of [Formula: see text], which possesses a component of energy flow normal to the boundary. The amplitudes of [Formula: see text] [Formula: see text] and [Formula: see text] are calculated for certain cases.

1979 ◽  
Vol 16 (7) ◽  
pp. 1388-1401 ◽  
Author(s):  
Larry W. Marks ◽  
F. Hron

The classical problem of the incidence of spherical waves on a plane boundary has been reformulated from the computational point of view by providing a high frequency approximation to the exact solution applicable to any seismic body wave, regardless of the number of conversions or reflections from the bottoming interface. In our final expressions the ray amplitude of the interference reflected-head wave is cast in terms of a Weber function, the numerical values of which can be conveniently stored on a computer disk file and retrieved via direct access during an actual run. Our formulation also accounts for the increase of energy carried by multiple head waves arising during multiple reflections of the reflected wave from the bottoming interface. In this form our high frequency expression for the ray amplitude of the interference reflected-head wave can represent a complementary technique to asymptotic ray theory in the vicinity of critical regions where the latter cannot be used. Since numerical tests indicate that our method produces results very close to those obtained by the numerical integration of the exact solution, its combination with asymptotic ray theory yields a powerful technique for the speedy computation of synthetic seismograms for plane homogeneous layers.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. KS1-KS10 ◽  
Author(s):  
Zhishuai Zhang ◽  
James W. Rector ◽  
Michael J. Nava

We have studied microseismic data acquired from a geophone array deployed in the horizontal section of a well drilled in the Marcellus Shale near Susquehanna County, Pennsylvania. Head waves were used to improve event location accuracy as a substitution for the traditional P-wave polarization method. We identified that resonances due to poor geophone-to-borehole coupling hinder arrival-time picking and contaminate the microseismic data spectrum. The traditional method had substantially greater uncertainty in our data due to the large uncertainty in P-wave polarization direction estimation. We also identified the existence of prominent head waves in some of the data. These head waves are refractions from the interface between the Marcellus Shale and the underlying Onondaga Formation. The source location accuracy of the microseismic events can be significantly improved by using the P-, S-wave direct arrival times and the head wave arrival times. Based on the improvement, we have developed a new acquisition geometry and strategy that uses head waves to improve event location accuracy and reduce acquisition cost in situations such as the one encountered in our study.


1995 ◽  
Vol 74 (6) ◽  
pp. 2665-2684 ◽  
Author(s):  
Y. Kondoh ◽  
Y. Hasegawa ◽  
J. Okuma ◽  
F. Takahashi

1. A computational model accounting for motion detection in the fly was examined by comparing responses in motion-sensitive horizontal system (HS) and centrifugal horizontal (CH) cells in the fly's lobula plate with a computer simulation implemented on a motion detector of the correlation type, the Reichardt detector. First-order (linear) and second-order (quadratic nonlinear) Wiener kernels from intracellularly recorded responses to moving patterns were computed by cross correlating with the time-dependent position of the stimulus, and were used to characterize response to motion in those cells. 2. When the fly was stimulated with moving vertical stripes with a spatial wavelength of 5-40 degrees, the HS and CH cells showed basically a biphasic first-order kernel, having an initial depolarization that was followed by hyperpolarization. The linear model matched well with the actual response, with a mean square error of 27% at best, indicating that the linear component comprises a major part of responses in these cells. The second-order nonlinearity was insignificant. When stimulated at a spatial wavelength of 2.5 degrees, the first-order kernel showed a significant decrease in amplitude, and was initially hyperpolarized; the second-order kernel was, on the other hand, well defined, having two hyperpolarizing valleys on the diagonal with two off-diagonal peaks. 3. The blockage of inhibitory interactions in the visual system by application of 10-4 M picrotoxin, however, evoked a nonlinear response that could be decomposed into the sum of the first-order (linear) and second-order (quadratic nonlinear) terms with a mean square error of 30-50%. The first-order term, comprising 10-20% of the picrotoxin-evoked response, is characterized by a differentiating first-order kernel. It thus codes the velocity of motion. The second-order term, comprising 30-40% of the response, is defined by a second-order kernel with two depolarizing peaks on the diagonal and two off-diagonal hyperpolarizing valleys, suggesting that the nonlinear component represents the power of motion. 4. Responses in the Reichardt detector, consisting of two mirror-image subunits with spatiotemporal low-pass filters followed by a multiplication stage, were computer simulated and then analyzed by the Wiener kernel method. The simulated responses were linearly related to the pattern velocity (with a mean square error of 13% for the linear model) and matched well with the observed responses in the HS and CH cells. After the multiplication stage, the linear component comprised 15-25% and the quadratic nonlinear component comprised 60-70% of the simulated response, which was similar to the picrotoxin-induced response in the HS cells. The quadratic nonlinear components were balanced between the right and left sides, and could be eliminated completely by their contralateral counterpart via a subtraction process. On the other hand, the linear component on one side was the mirror image of that on the other side, as expected from the kernel configurations. 5. These results suggest that responses to motion in the HS and CH cells depend on the multiplication process in which both the velocity and power components of motion are computed, and that a putative subtraction process selectively eliminates the nonlinear components but amplifies the linear component. The nonlinear component is directionally insensitive because of its quadratic non-linearity. Therefore the subtraction process allows the subsequent cells integrating motion (such as the HS cells) to tune the direction of motion more sharply.


Geophysics ◽  
1963 ◽  
Vol 28 (4) ◽  
pp. 563-581 ◽  
Author(s):  
John W. Dunkin

The problem of transient wave propagation in a three‐layered, fluid or solid half‐plane is investigated with the point of view of determining the effect of refracting bed thickness on the character of the two‐dimensional head wave. The “ray‐theory” technique is used to obtain exact expressions for the vertical displacement at the surface caused by an impulsive line load. The impulsive solutions are convolved with a time function having the shape of one cycle of a sinusoid. The multiple reflections in the refracting bed are found to affect the head wave significantly. For thin refracting beds in the fluid half‐space the character of the head wave can be completely altered by the strong multiple reflections. In the solid half‐space the weaker multiple reflections affect both the rate of decay of the amplitude of the head wave with distance and the apparent velocity of the head wave by changing its shape. A comparison is made of the results for the solid half‐space with previously published results of model experiments.


Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. T155-T164
Author(s):  
Wanting Hou ◽  
Li-Yun Fu ◽  
José M. Carcione ◽  
Zhiwei Wang ◽  
Jia Wei

Thermoelasticity is important in seismic propagation due to the effects related to wave attenuation and velocity dispersion. We have applied a novel finite-difference (FD) solver of the Lord-Shulman thermoelasticity equations to compute synthetic seismograms that include the effects of the thermal properties (expansion coefficient, thermal conductivity, and specific heat) compared with the classic forward-modeling codes. We use a time splitting method because the presence of a slow quasistatic mode (the thermal mode) makes the differential equations stiff and unstable for explicit time-stepping methods. The spatial derivatives are computed with a rotated staggered-grid FD method, and an unsplit convolutional perfectly matched layer is used to absorb the waves at the boundaries, with an optimal performance at the grazing incidence. The stability condition of the modeling algorithm is examined. The numerical experiments illustrate the effects of the thermoelasticity properties on the attenuation of the fast P-wave (or E-wave) and the slow thermal P-wave (or T-wave). These propagation modes have characteristics similar to the fast and slow P-waves of poroelasticity, respectively. The thermal expansion coefficient has a significant effect on the velocity dispersion and attenuation of the elastic waves, and the thermal conductivity affects the relaxation time of the thermal diffusion process, with the T mode becoming wave-like at high thermal conductivities and high frequencies.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1421-1427 ◽  
Author(s):  
E. R. Kanasewich ◽  
P. G. Kelamis ◽  
F. Abramovici

Exact synthetic seismograms are obtained for a simple layered elastic half‐space due to a buried point force and a point torque. Two models, similar to those encountered in seismic exploration of sedimentary basins, are examined in detail. The seismograms are complete to any specified time and make use of a Cagniard‐Pekeris method and a decomposition into generalized rays. The weathered layer is modeled as a thin low‐velocity layer over a half‐space. For a horizontal force in an arbitrary direction, the transverse component, in the near‐field, shows detectable first arrivals traveling with a compressional wave velocity. The radial and vertical components, at all distances, show a surface head wave (sP*) which is not generated when the source is compressive. A buried vertical force produces the same surface head wave prominently on the radial component. An example is given for a simple “Alberta” model as an aid to the interpretation of wide angle seismic reflections and head waves.


1976 ◽  
Vol 17 (77) ◽  
pp. 447-462 ◽  
Author(s):  
L. W. Morland

The treatments by Nye and Kamb of glacier sliding over a wavy bed with small slope, which assume the ice to be approximated by a Newtonian fluid of high viscosity, are complemented by the inclusion of the glacier depth and the inclination of the bed to the horizontal. The driving force of the motion, gravity, is therefore present in the flow equations and defines immediately the mean drag on the bed. A geothermal heal flux is also included in order to estimate its possible effect on the flow. A complex variable method is used to determine the velocity and temperature fields to second order in the bed slope. These fields satisfy the zero shear traction and pressure-melting-regelation conditions to the same order on the actual bed profile. It is the balance of the second-order term which determines explicitly the (zero order) basal-sliding velocity and surface velocity in terms of the geometry and physical properties of both ice and bed. An explicit solution is illustrated for a sinusoidal bed. and a simple criterion for the onset of cavitation is obtained.


Sign in / Sign up

Export Citation Format

Share Document