scholarly journals Tectonic inversion of salt-detached ramp-syncline basins as illustrated by analog modeling and kinematic restoration

2018 ◽  
Vol 6 (1) ◽  
pp. T127-T144 ◽  
Author(s):  
Maria Roma ◽  
Oskar Vidal-Royo ◽  
Ken McClay ◽  
Oriol Ferrer ◽  
Josep Anton Muñoz

Salt-detached ramp-syncline basins are developed in extensional settings and are characterized by wide synclinal sedimentary basins detached on salt and formed above the hanging wall of active ramp-flat-ramp extensional faults. They are rarely fault bounded; instead, they are bounded by salt structures that are in general parallel to the major subsalt structures. As such, the formation of these extensional systems requires the presence of (1) a subsalt extensional fault with significant dip changes and (2) an evaporitic unit above the extensional fault, which partially or completely decouples the basin from a subsalt extensional fault. Salt-detached ramp-syncline basins have a significant exploration potential when their extensional geometry is preserved and when they have undergone positive tectonic inversion and consequent uplift and fold amplification. However, in some cases, their subsalt geometry may not be fully recognizable, especially when subsalt seismic imaging is poor. To obtain a deeper understanding of the geometry and kinematic evolution of these salt-detached ramp-syncline basins, we performed a series of analog modeling experiments, in which the models’ cross sections had been sequentially restored. Analog models and restoration results reveal that the kinematic evolution of the salt-detached ramp-syncline basins during extension and inversion depends on the interaction of different factors that may function simultaneously. Our results are used to improve the interpretation of seismic sections in inverted Mesozoic salt-detached ramp-syncline basins on the Atlantic margins, where subsalt faults are not well-imaged, and thus the suprasalt geometries must be used to infer the subsalt structure.

2016 ◽  
Vol 153 (5-6) ◽  
pp. 1066-1084 ◽  
Author(s):  
FACUNDO FUENTES ◽  
BRIAN K. HORTON ◽  
DANIEL STARCK ◽  
ANDRÉS BOLL

AbstractAndean Cenozoic shortening within the Malargüe fold–thrust belt of west-central Argentina has been dominated by basement faults largely influenced by pre-existing Mesozoic rift structures of the Neuquén basin system. The basement contractional structures, however, diverge from many classic inversion geometries in that they formed large hanging-wall anticlines with steeply dipping frontal forelimbs and structural relief in the order of several kilometres. During Cenozoic E–W shortening, the reactivated basement faults propagated into cover strata, feeding slip to shallow thrust systems that were later carried in piggyback fashion above newly formed basement structures, yielding complex thick- and thin-skinned structural relationships. In the adjacent foreland, Cenozoic clastic strata recorded the broad kinematic evolution of the fold–thrust belt. We present a set of structural cross-sections supported by regional surface maps and industry seismic and well data, along with new stratigraphic information for associated Neogene synorogenic foreland basin fill. Collectively, these results provide important constraints on the temporal and geometric linkages between the deeper basement faults (including both reactivated and newly formed structures) and shallow thin-skinned thrust systems, which, in turn, offer insights for the understanding of hydrocarbon systems in the actively explored Neuquén region of the Andean orogenic belt.


2021 ◽  
Author(s):  
Nadine McQuarrie ◽  
Mary Braza

<div> <p>One of the first order questions regarding a cross-section representation through a fold-thrust belt (FTB) is usually “how unique is this geometrical interpretation of the subsurface?”  The proposed geometry influences perceptions of inherited structures, decollement horizons, and both rheological and kinematic behavior.  Balanced cross sections were developed as a tool to produce more accurate and thus more predictive geological cross sections.  While balanced cross sections provide models of subsurface geometry that can reproduce the mapped surface geology, they are non-unique, opening the possibility that different geometries and kinematics may be able to satisfy the same set of observations. The most non-unique aspects of cross sections are: (1) the geometry of structures that is not seen at the surface, and (2) the sequence of thrust faulting.  We posit that integrating sequentially restored cross sections with thermokinematic models that calculate the resulting subsurface thermal field and predicted cooling ages of rocks at the surface provides a valuable means to assess the viability of proposed geometry and kinematics.  Mineral cooling ages in compressional settings are the outcome of surface uplift and the resulting focused erosion.  As such they are most sensitive to the vertical component of the kinematic field imparted by ramps and surface breaking faults in sequential reconstructions of FTB.  Because balanced cross sections require that the lengths and locations of hanging-wall and footwall ramps match, they provide a template of the ways in which the location and magnitude of ramps in the basal décollement have evolved with time.  Arunachal Pradesh in the eastern Himalayas is an ideal place to look at the sensitivity of cooling ages to different cross section geometries and kinematic models. Recent studies from this portion of the Himalayan FTB include both a suite of different cross section geometries and a robust bedrock thermochronology dataset. The multiple published cross-sections differ in the details of geometry, implied amounts of shortening, kinematic history, and thus exhumation pathways. Published cooling ages data show older ages (6-10 Ma AFT, 12-14 Ma ZFT) in the frontal portions of the FTB and significantly younger ages (2-5 Ma AFT, 6-8 Ma ZFT) in the hinterland. These ages are best reproduced with kinematic sequence that involves early forward propagation of the FTB from 14-10 Ma.  The early propagation combined with young hinterland cooling ages require several periods of out-of-sequence faulting. Out-of-sequence faults are concentrated in two windows of time (10-8 Ma and 7-5 Ma) that show systematic northward reactivation of faults.  Quantitative integration of cross section geometry, kinematics and cooling ages require notably more complicated kinematic and exhumation pathways than are typically assumed with a simple in-sequence model of cross section deformation.  While also non-unique, the updated cross section geometry and kinematics highlight components of geometry, deformation and exhumation that must be included in any valid cross section model for this portion of the eastern Himalaya.</p> </div>


2015 ◽  
Vol 7 (1) ◽  
pp. 459-494
Author(s):  
L. Giambiagi ◽  
S. Spagnotto ◽  
S. M. Moreiras ◽  
G. Gómez ◽  
E. Stahlschmidt ◽  
...  

Abstract. The Cacheuta sub-basin of the Triassic Cuyo Basin is an example of rift basin inversion contemporaneous to the advance of the Andean thrust front, during the Plio-Quaternary. This basin is one of the most important sedimentary basins in a much larger Triassic NNW-trending depositional system along the southwestern margin of the Pangea supercontinent. The amount and structural style of inversion is provided in this paper by three-dimensional insights into the relationship between inversion of rift-related structures and spatial variations in late Cenozoic stress fields. The Plio-Quaternary stress field exhibits important N–S variations in the foreland area of the Southern Central Andes, between 33 and 34° S, with a southward gradually change from pure compression with σ1 and σ2 being horizontal, to a strike-slip type stress field with σ2 being vertical. We present a 3-D approach for studying the tectonic inversion of the sub-basin master fault associated with strike-slip/reverse to strike-slip faulting stress regimes. We suggest that the inversion of Triassic extensional structures, striking NNW to WNW, occurred during the Plio–Pleistocene in those areas with strike-slip/reverse to strike-slip faulting stress regime, while in the reverse faulting stress regime domain, they remain fossilized. Our example demonstrates the impact of the stress regime on the reactivation pattern along the faults.


1970 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
K. G. Smith

The Basins Study Group is part of the Subsurface Section of the Bureau's Petroleum Exploration Branch and was formed in 1962 to collect and review available basic data on the sedimentary basins of Australia and Papua-New Guinea. The Core and Cuttings Laboratory forms the second part of the Subsurface Section, and the Laboratory's technical staff contribute to basin reviews by carrying out analyses of various kinds, and assist in the collection of data principally by providing thin sections of various sedimentary formations.Recent activities of the Basins Study Group include a review of the Sydney Basin, and an increased effort to assemble basic data on all sedimentary basins, with particular emphasis on the Canning and Carnarvon Basins.The review of the Sydney Basin is nearing completion. It was undertaken with the co-operation of the Geological Survey of New South Wales and received generous support from petroleum exploration companies active in the Basin. The review included detailed petrological examination of twelve wells and selected outcrop samples. The results confirmed the previously-held opinions that the reservoir characteristics of Sydney Basin sediments are generally unfavourable. At present there are no indications of untested onshore areas where an improvement in reservoir properties may occur. The Bureau petrologists detected the rare mineral dawsonite in eight wells; the mineral occurred mostly in Permian sediments, both in marine and non-marine rocks, but it was recorded also from Triassic rocks in the Kurrajong Heights No. 1 well. The review of geophysical data from the Sydney Basin was concentrated mainly on seismic work. The magnetic tapes of three surveys were replayed and considerable improvement in records was effected. Record sections of all seismic surveys were reduced photographically to a horizontal scale of 1:50,000 and the reductions were spliced to provide easily-managed cross-sections. The geophysical review is nearing completion and structure contour maps and isochrons are in preparation.The collection of basic data is done for each sedimentary basin as it becomes available, but present emphasis is on assembling data from Western Australian basins: all seismic traverses in the onshore parts of the Canning and Carnarvon Basins have been plotted at 1:250,000 scale, and with the co-operation of the Geological Survey of Western Australia, bibliographies of the Canning, Carnarvon and Perth Basins have been compiled for issue as Open-file Records. Bibliographies of the Papuan and Ipswich-Clarence Basins have also been compiled.


2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


2018 ◽  
Vol 55 (8) ◽  
pp. 905-922 ◽  
Author(s):  
Pierre Bedeaux ◽  
Lucie Mathieu ◽  
Pierre Pilote ◽  
Silvain Rafini ◽  
Réal Daigneault

The Piché Structural Complex (PSC) extends over 150 km within the Cadillac – Larder Lake Fault Zone (CLLFZ), a gold-endowed, east-trending, and high-strain corridor located along the southern edge of the Archean Abitibi Subprovince. The PSC consists of discontinuous units of volcanic rocks (<1 km thick) that host multiple gold deposits. It is spatially associated with molasse-type Timiskaming sedimentary basins. This study describes and interprets the origin of structures and lithologies within the poorly understood PSC to unravel the tectonic evolution of the CLLFZ. Field mapping, chemical analyses, as well as interpretations of cross-sections from drill-hole data, were used to interpret the geometry and structure of the PSC. The PSC is subdivided into six homogeneous fault-bounded segments or slivers. These slivers consist mostly of ultramafic to intermediate volcanic rocks and include some felsic volcanic flows and intrusions. Volcanic facies, chemical compositions, and isotopic ages confirm that these slivers are derived from the early volcanic units of the southern Abitibi greenstone belt, which are located north of the CLLFZ. Cross-cutting relationships between volcanic rocks of the PSC and the Timiskaming-aged intrusions suggest that the slivers were inserted into the CLLFZ during the early stages of the accretion-related deformation (<2686 Ma) and prior to Timiskaming sedimentation and ductile deformation (>2676 Ma). The abundant ultramafic rocks located within the CLLFZ may have focused strain, thereby facilitating the nucleation of the fault as well as the displacements along this crustal-scale structure.


2015 ◽  
Vol 3 (4) ◽  
pp. SAC35-SAC53 ◽  
Author(s):  
Alan Wood ◽  
Douglas Paton ◽  
Richard Collier ◽  
Viki O’Connor

A major challenge when exploring for hydrocarbons in frontier areas is a lack of data coverage. Data may be restricted to regional-scale 2D seismic lines, from which assumptions of the 3D geometric configuration are drawn. Understanding the limitations and uncertainties when extrapolating 2D data into 3D space is crucial when assessing the requirements for acquiring additional data such as 3D seismic or exploration wells and of assigning geologically reasonable uncertainty ranges. The onshore Gulf of Corinth Rift provides an excellent analog for rift-scale structural uncertainty in the context of hydrocarbon exploration. We have used seismic forward modeling to explore this area of uncertainty. Synthetic seismic sections have been generated across the rift based upon fault geometries mapped in the field. Comparisons that we made of these sections with the mapped geometries allowed quantification of uncertainties encountered when extrapolating 2D data into three dimensions. We have determined how potential column heights may be severely over and underestimated due to trap integrity, spill point depth, and fault seal ambiguities directly related to fault geometric uncertainty. In addition, fault geometries and linkages also controlled the location of hanging wall synrift reservoirs. Hence, gross reservoir volumes and sediment facies distributions were also significantly influenced by how fault geometries were extrapolated along-strike from 2D to 3D.


Formulation of the problem. In the second part of the article, the geodynamic mode and the kinematic mechanism of destruction of the Dnieper–Donetsk Basin by tectonic movements of the Late Hercynian and Alpine stages of tectogenesis were studied. New results of tectonophysical studies of the structural–kinematic evolution of the Earth's crust of Dnieper–Donetsk Basin at the collision stage are presented. The subject of research is a complex of deformation structures that complicate the sedimentary cover in the transitional zone of with Donetsk Foldbelt. Review of previous publications and studies. Using instrumental definitions of tectonite vergence, data of reconstruction of stress fields and quantitative modeling of deformations, a original kinematic model of tectonic inversion of the Dnieper–Donetsk Basin was developed. Methods. Structural–kinematic analysis of the structural drawings of collisional deformation and tectonics structures was used for regional geotectonic studies. Results. Tectonic inversion of the Dnieper-Donetsk Basin and Donbass began at the Late Hercynian epoch as a result of collisional movements of the compression orogen on the outskirts of the Paleotethis. Tangential compression of the southwestern direction led to the formation of gentle tectonic faults in the sedimentary cover of the Western Donets Graben, along which a lattice of thrust faults was formed. For a set of extrusion of sedimentary rocks in the reverse–thrust mode from the axial super-compressed zone, tectonic transport of geomas took place in the direction of the zones of "geodynamic shadow" on the southern side. Collisional deformations of horizons by the mechanism of longitudinal bending of the layers caused the formation of linear uplift-folding in the northern part of the Graben, and echelons of scaly thrust covers in the southern. At the Mesozoic and Cenozoic epochs, in the mode of interference of the reverse–thrust and horizontal-strike-slip fields, the Hercynian thrust lattice and the near-fault uplift folds underwent collisional deformation with the formation of coulisse–jointed folded zones and echeloned thrust covers. Based on the kinematic model of tectonic inversion of the Western Donets Graben, the geodynamics of the formation of the transition zone between the Dnieper–Donets Basin and the Donetsk Foldbelt is reconstructed. These data are the basis for adjusting the regional schemes of tectonic and oil and gas geological zoning. Scientific novelty and practical significance. The grouping of the compression axes in the western part of the Donbass caused the formation of a gorst-like geoblock-stamp, under the pressure of which the dislocated geomasses were thrusting onto the syneclisic cover of the southeastern segment of the depression. In the Western Donetsk Graben, the allochthonous stratum formed the body of the tectonic wedging geomas segment. Along the main strike–slip faults, which form the "tectonic rails" of the invasion, geodynamic zones of displacement of geomas were formed, composed of en-echelon articulated upthrust-folds. In its foreland, at the ends of the main strike–slip faults, an advanced scaly compression fan was formed, and in the hinterland, folded sutures were formed on the roots of the thrust covers. The main result of the research is a fundamentally new kinematic model of tectonic inversion of the Dnieper-Donetsk Basin. The model provides that the deformations of the riftogenic structure within the Graben were carried out according to the kinematic mechanism of the formation of a transverse orocline protruding under the pressure of the tectonic geoblock-stamp of the Donetsk Foldbelt.


1969 ◽  
Vol 20 ◽  
pp. 99-102
Author(s):  
Stig A. Schack Pedersen ◽  
Lars Ole Boldreel ◽  
Emil Bach Madsen ◽  
Mette Bjerkvig Filtenborg ◽  
Lars Henrik Nielsen

In the c. 40 000 km2 large Phu Quoc basin south-west of Vietnam reflection seismic data suggest a thin-skinned thrust-fault complex concealed by Neogene marine sediments (Fig. 1; Fyhn et al. 2010). The deformed sedimentary succession in the complex is of Early Cretaceous age, which is documented by biostratigraphical studies of outcrops and a 500 m deep well on the Phu Quoc island. A model for the thrust-fault deformation suggests that piggy-back basins were formed during displacement along the thrust faults. The translation was 3–8 km from east to west. The model is based on detailed structural analyses of 36 seismic sections that cover the Phu Quoc basin (Fig. 1). The main structural elements in the complex are flats and ramps with hanging-wall anticlines developed above the ramps. The crests of the hanging-wall anticlines occur as remnants of partially eroded structural highs. This paper describes the thin-skinned thrust-fault structures that form the basis for the interpretation of the concealed fold-belt complex in the Phu Quoc basin.


Sign in / Sign up

Export Citation Format

Share Document