scholarly journals GLOBAL STABILITY OF A DELAYED RATIO-DEPENDENT PREDATOR-PREY MODEL WITH GOMPERTZ GROWTH FOR PREY

2015 ◽  
Vol 5 (1) ◽  
pp. 28-37
Author(s):  
Shihua Zhang ◽  
◽  
Rui Xu
2005 ◽  
Vol 2005 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Hai-Feng Huo ◽  
Wan-Tong Li

We first give sufficient conditions for the permanence of nonautonomous discrete ratio-dependent predator-prey model. By linearization of the model at positive solutions and construction of Lyapunov function, we also obtain some conditions which ensure that a positive solution of the model is stable and attracts all positive solutions.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Jawdat Alebraheem

In this article, the use of predator-dependent functional and numerical responses is proposed to form an autonomous predator–prey model. The dynamic behaviors of this model were analytically studied. The boundedness of the proposed model was proven; then, the Kolmogorov analysis was used for validating and identifying the coexistence and extinction conditions of the model. In addition, the local and global stability conditions of the model were determined. Moreover, a novel idea was introduced by adding the oscillation of the immigration of the prey into the model which forms a non-autonomous model. The numerically obtained results display that the dynamic behaviors of the model exhibit increasingly stable fluctuations and an increased likelihood of coexistence compared to the autonomous model.


2022 ◽  
Vol 40 ◽  
pp. 1-20
Author(s):  
Parisa Azizi ◽  
Reza Khoshsiar Ghaziani

In this paper, we study a ratio-dependent predator-prey model with modied Holling-Tanner formalism, by using dynamical techniques and numerical continuation algorithms implemented in Matcont. We determine codim-1 and 2 bifurcation points and their corresponding normal form coecients. We also compute a curve of limit cycles of the system emanating from a Hopf point.


Sign in / Sign up

Export Citation Format

Share Document