Basics of Markov chain simulation

2013 ◽  
pp. 291-308
Keyword(s):  
2019 ◽  
Vol 62 (3) ◽  
pp. 577-586 ◽  
Author(s):  
Garnett P. McMillan ◽  
John B. Cannon

Purpose This article presents a basic exploration of Bayesian inference to inform researchers unfamiliar to this type of analysis of the many advantages this readily available approach provides. Method First, we demonstrate the development of Bayes' theorem, the cornerstone of Bayesian statistics, into an iterative process of updating priors. Working with a few assumptions, including normalcy and conjugacy of prior distribution, we express how one would calculate the posterior distribution using the prior distribution and the likelihood of the parameter. Next, we move to an example in auditory research by considering the effect of sound therapy for reducing the perceived loudness of tinnitus. In this case, as well as most real-world settings, we turn to Markov chain simulations because the assumptions allowing for easy calculations no longer hold. Using Markov chain Monte Carlo methods, we can illustrate several analysis solutions given by a straightforward Bayesian approach. Conclusion Bayesian methods are widely applicable and can help scientists overcome analysis problems, including how to include existing information, run interim analysis, achieve consensus through measurement, and, most importantly, interpret results correctly. Supplemental Material https://doi.org/10.23641/asha.7822592


2018 ◽  
Vol 23 (3) ◽  
pp. 175-191
Author(s):  
Anneke Annassia Putri Siswadi ◽  
Avinanta Tarigan

To fulfill the prospective student's information need about student admission, Gunadarma University has already many kinds of services which are time limited, such as website, book, registration place, Media Information Center, and Question Answering’s website (UG-Pedia). It needs a service that can serve them anytime and anywhere. Therefore, this research is developing the UGLeo as a web based QA intelligence chatbot application for Gunadarma University's student admission portal. UGLeo is developed by MegaHal style which implements the Markov Chain method. In this research, there are some modifications in MegaHal style, those modifications are the structure of natural language processing and the structure of database. The accuracy of UGLeo reply is 65%. However, to increase the accuracy there are some improvements to be applied in UGLeo system, both improvement in natural language processing and improvement in MegaHal style.


Sign in / Sign up

Export Citation Format

Share Document