scholarly journals Prolactin Suppresses Glucocorticoid-Induced Thymocyte Apoptosis in Vivo

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2102-2110 ◽  
Author(s):  
Nithya Krishnan ◽  
Olivier Thellin ◽  
Donna J. Buckley ◽  
Nelson D. Horseman ◽  
Arthur R. Buckley

The hypothesis that prolactin (PRL) functions as an immunomodulator was based on studies showing lymphocyte PRL receptors, and its effects on growth, differentiation, and apoptosis in lymphoid cells. However, studies of PRL (PRL−/−) and PRL receptor knockout mice indicated that PRL was not required for immune system development or function under basal conditions. Because PRL maintains survival in glucocorticoid (GC)-treated Nb2-T lymphocytes in vitro, and PRL and GCs are elevated during stress, we investigated whether PRL protected T cells in vivo from GC-induced apoptosis. Adrenalectomized mice [PRL −/−, undetectable PRL; pituitary grafted PRL−/− (PRL−/−Graft), elevated PRL; and PRL+/−, normal PRL] were treated with dexamethasone (DEX) or PBS. Thymocytes and splenocytes were isolated and annexin V labeling of phosphatidylserine, DNA fragmentation, and caspase-3 activation were assessed as indices of apoptosis. Total thymocytes and CD4+ and CD8+ T cells obtained from DEX-treated PRL−/− mice exhibited significantly increased annexin V binding. In contrast, binding was not altered by DEX in PRL−/−Graft thymocytes. In addition, DEX induced classic DNA fragmentation in PRL−/− thymocytes. Elevated serum PRL reduced this effect. Thymocytes from DEX-treated PRL−/− mice exhibited increased caspase-3 activation, which was inhibited in cells from PRL−/−Graft mice. Finally, elevated expression of X-linked inhibitor of apoptosis, XIAP, was observed in thymi from DEX-treated PRL −/−Graft mice. This is the first demonstration that elevated PRL antagonizes apoptosis in thymocytes exposed to GCs in vivo. These observations suggest that, under conditions of increased GCs, such as during stress, elevated PRL functions physiologically to maintain survival and function of T-lymphocytes.

2011 ◽  
Vol 4 (4) ◽  
pp. 211
Author(s):  
Serena Meraviglia ◽  
Carmela La Mendola ◽  
Valentina Orlando ◽  
Francesco Scarpa ◽  
Giuseppe Cicero ◽  
...  

The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.<br />


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Giovanni Cimmino ◽  
Giovanni Ciccarelli ◽  
Stefano Conte ◽  
Grazia Pellegrino ◽  
Luigi Insabato ◽  
...  

Background: Activation of T-cells plays an important role in the pathophysiology of acute coronary syndromes (ACS). We have previously shown that plaques from ACS patients are characterized by a selective oligoclonal expansion of T-cells, indicating a specific, antigen-mediated recruitment of T-cells within the unstable lesions. We have also previously reported that activated T-cells in vitro express functional Tissue Factor (TF) on their surface. At the moment, however it is not known whether expression of TF by T-cells may contribute to thrombus formation in vivo. Methods: Blood was collected from the aorta and the coronary sinus of 13 NSTEMI and 10 stable CAD patients. CD3+ cells were selectively isolated and TF gene expression (real time PCR)and protein levels (western blot) were evaluated. In additional 7 STEMI patients, thrombotic formation material was obtained from the occluded coronary artery by catheter aspiration during primary PCI. TF expression in CD3+ cells was evaluated by immunohistochemistry and confocal microscopy. Results: Transcardiac TF expression in CD3+ cells was significantly higher in NSTEMI patients as compared to CD3+ cells obtained from stable CAD patients. Interestingly, thrombi aspirated from STEMI patients resulted enriched in CD3+cells, which expressed TF on their surface as shown in the figure. Conclusions: Our data demonstrate that in patients with ACS, T-lymphocytes may express surface TF, thus contributing to the process of thrombus formation. This finding may shed new light into the pathophysiologyof ACS.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


2020 ◽  
Vol 52 (10) ◽  
pp. 1131-1139
Author(s):  
Qian Li ◽  
Min Wang ◽  
Yan Zhang ◽  
Liuqian Wang ◽  
Wei Yu ◽  
...  

Abstract Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and Southeast Asia. Nowadays, radiotherapy is the therapy of choice for NPC patients, and chemotherapy has been found as an alternative treatment for advanced NPC patients. However, finding novel drugs and pharmacologically therapeutic targets for NPC patients is still urgent and beneficial. Our study showed that BIX-01294 (BIX) can induce autophagic vacuoles formation and conversion of LC3B-I to LC3B-II in NPC cells in both dose- and time-dependent manners. Notably, the combination of BIX and chemotherapeutic drugs significantly decreased the cell viability and increased the lactate dehydrogenase release. Meanwhile, BIX plus cis-platinum (Cis) treatment induced pyroptosis in NPC cells as featured by cell swelling and bubble blowing from the plasma membrane, the increased frequency of annexin V and propidium iodide (PI) double-positive cells, as well as the cleavage of gasdermin E (GSDME) and caspase-3. Moreover, the deficiency of GSDME completely shifted pyroptosis to apoptosis. Furthermore, the inhibition of autophagy by chloroquine and the knockout of ATG5 gene significantly blocked the BIX-induced autophagy as well as pyroptosis in both in vitro and in vivo studies. Our data demonstrated that BIX-combined chemotherapeutic drugs could induce the Bax/caspase-3/GSDME-mediated pyroptosis through the activation of autophagy to enhance the chemosensitivity in NPC.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


1994 ◽  
Vol 180 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
M B Graham ◽  
V L Braciale ◽  
T J Braciale

T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 866-866
Author(s):  
Carolina Berger ◽  
Michael C. Jensen ◽  
Stanley R. Riddell

Abstract Adoptive transfer of T cells has been employed to reconstitute T cell immunity to viruses such as cytomegalovirus (CMV) in immunodeficient allogeneic stem cell transplant (SCT) patients and is being investigated to treat malignancies. In the allogeneic SCT setting, the T cells are derived from the donor and need to be isolated as clones or highly pure populations to avoid graft-versus-host disease. CD8+ T cells can be divided into defined subsets including CD62L− effector memory (TEM) and central memory T cells (TCM) expressing the CD62L lymph node homing molecule. Both TCM and TEM can give rise to cytolytic effector T cells (TE) after antigen stimulation and can be expanded in vitro for immunotherapy. However, the potential of T cells derived from either the TEM or TCM subset to persist in vivo has not been investigated. We used a macaque model to determine whether reconstitution of T cell memory to CMV by adoptive transfer of CD8+ T cell clones depended on their origin from either the CD62L+ TCM or CD62L− TEM subset. T cell clones were retrovirally transduced to express the macaque CD19 or CD20 surface marker to allow tracking of T cells in vivo. Clones derived from both TCM and TEM had similar avidity and proliferative capacity in vitro, and had a TE phenotype (CD62L−CCR7−CD28−CD127−, granzyme B+). TCM and TEM-derived T cell clones were transferred to macaques at doses of 3–6×108/kg and were both detected in the blood one day after transfer at 1.2–2.7% (low dose) to 20–25% (high dose) of CD8+ T cells. However, the frequency of TEM-derived T cells was undetectable after 3–5 days, and the cells were not present in lymph node or bone marrow obtained at day 14. By contrast, TCM-derived clones persisted in peripheral blood, migrated to tissue sites, and were detectable long-term at significant levels. A distinguishing feature of TCM-derived cells was their responsiveness to homeostatic cytokines. Only TCM-derived clones were rescued from apoptotic cell death by low-dose IL15 for &gt;30 days in vitro and this correlated with higher levels of IL15Rα, IL2Rβ, and IL2Rγ, and of Bcl-xL and Bcl-2, which promote cell survival. To determine if the inability of TEM-derived clones to survive in vitro correlated with an increased susceptibility of cell death in vivo, we measured the proportion of infused cells that were positive for propidium iodide (PI) and Annexin V during the short period of in vivo persistence. One day after transfer, 41–45% of TEM-derived T cells were Annexin V+/PI+, analyzed directly in the blood or after 24 hours of culture. By contrast, only a minor fraction of an adoptively transferred TCM-derived T cell clone was Annexin V+/PI+ and the infused cells survived in vivo. A subset of the persisting T cells reacquired TCM marker (CD62L+CCR7+CD127+CD28+) in vivo and regained functional properties of TCM (direct lytic activity; rapid proliferation to antigen). These T cells produced IFN-γ and TNF-α after peptide stimulation, and studies are in progress to assess their in vivo response to antigen by delivery of T cells expressing CMV proteins. Our studies in a large animal model show for the first time that CD8+ TE derived from TCM but not TEM can persist long-term, occupy memory T cell niches, and restore TCM subsets of CMV-specific immunity. Thus, taking advantage of the genetic programming of cells that have become TCM might yield T cells with greater therapeutic activity and could be targeted for human studies of T cell therapy for both viral and malignant disease.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4803-4803
Author(s):  
Weihua Song ◽  
Teru Hideshima ◽  
Yu-Tzu Tai ◽  
Kenneth C. Anderson ◽  
Nikhil C. Munshi

Abstract Perifosine is a synthetic novel alkylphospholipid, a new class of antitumor agent which targets cell membranes and inhibits Akt activation. Perifosine inhibits multiple myeloma (MM) cell growth in vitro and in vivo mouse model. Currently perifosine is under the evaluation of phase II clinical trail in MM. Although perifosine has shown significant direct antitumor effects, its effect on immune system has not yet been clarified. The objective of this study is to evaluate the effects of perifosine on the activity of antigen presenting cells (APCs). Monocyte-derived dendritic cells (DCs) from normal human donors were used as the APCs, and mature DCs were obtained by the treatment of TNF-α and IL-1β. Perifosine was used at the concentrations of 2.5 uM, 5 uM and 10 uM for the treatment with DCs. We first evaluated the effect of perifosine on the survival of DCs. We observed that the perifosine treatment up to 48 hours had no effect on viability (>90%) of DCs, assessed by annexin V and PI staining. Alteration of phenotype by perifosine on DCs was further examined by flow cytometry. Our results demonstrated that with dose-dependent manner, perifosine led to a significant down-regulation of surface antigens on immature DCs at 24 and 48 hours, which associated to costimulation (CD40, CD80 and CD86), antigen presentation (HLA-ABC, HLA-DPQR) and maturation (CD83). However, we did not observed significant effect of perifosine on above surface markers on mature DCs. Since DCs play a crucial role on the regulation of Th1/Th2 immune responses by the production of IL-12, we next evaluated IL-12 secretion by DCs with and without perifosine treatment. Importantly, treatment with perifosine significantly decreased LPS-induced-IL-12 production, compared to untreated DCs (untrt vs. trt = 192.29 vs. 166.23 pg/ml (2.5uM), 111.19 pg/ml (5uM) and 44.886 pg/ml (10uM)) at 24 hours. To assess the effect of perifosine on DCs function on the regulation of T cell responses, we stimulated allogenic T cells with mature DCs with or without the pre-treatment of perifosine. The proliferation assay by 3H-TdR incorporation and IFN-γ production by ELISA indicated perifosine-treated DCs had no significant effect on the regulation of T cells function. Taken together, these results showed that DCs function are influenced by the treatment of perifosine. Our pre-clinical data therefore indicates the need to monitor immune functions in patients under the Akt inhibitor treatment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3534-3534
Author(s):  
Juan F Vera ◽  
Valentina Hoyos ◽  
Barbara Savoldo ◽  
Concetta Quintarelli ◽  
Greta A Giordano ◽  
...  

Abstract Providing a proliferative and survival advantage to tumor-specific cytotoxic T lymphocytes (CTLs) remains a challenge in the adoptive therapy of cancer patients. It is now evident that the in vivo expansion of T cells after adoptive transfer is best accomplished in the lymphodepleted host due to the increased production of endogenous IL15 and IL7, which help restore lymphopoiesis. We have found that antigen activated cytotoxic T lymphocytes (CTLs) directed to tumor associated epitopes (for example derived from EBV, or from cancer testis antigens such as PRAME) down regulate a chain of IL7R, a common γ chain cytokine receptor, impairing their capacity to respond to IL7. We hypothesized that despite receptor downregulation, the signal transduction pathway for IL7R would remain intact in the CTLs so that forced expression of IL7Rα would restore IL7 responsiveness and improve in vivo expansion and survival of CTLs. We used EBV-specific CTLs as our model, and showed in vitro that a functional IL-7Ra molecule can be expressed in CTLs using retroviral gene transfer so that the percentage of receptor + cells increased from 2.4%±0.5% to 50%±20. This modification restored the in vitro proliferation of genetically modified CTLs in response to IL7 so that cell numbers increased from 1×106 cells to 0.1×109 (range, 0.6×108 to 0.3×109)] comparable with the effects of IL2 [from 1×106 cells to 0.7×109 (range, 0.7×107 to 1.6×109)] In contrast, control EBV-CTL with IL7 progressively declined in number (p<0.001) These effects were accomplished without alteration of antigen specificity or responsiveness to other common γ chain cytokines, and cell survival remained antigen dependent. In a xenogeneic mouse model, CTLs expressing IL7Ra significantly expanded in vivo in response to EBV-tumor antigen and the administration of IL7. By day 15, both control CTLs and IL7Ra+ CTLs had modestly proliferated in response to IL-2 (2.3 fold, range 1.1–5.1 for control CTLs, and 2.67 fold, range 0.6 to 8.15 for IL7Ra+ CTLs). In contrast, only IL7Ra+ CTLs significantly expanded in the presence of IL7, showing a 6.09 fold increase (range 0.7 to 25.2) compared to mice that received control CTLs and IL7 (0.9 fold, range 0.5–1.7) (p<0.0001). Modified CTLs also provided enhanced anti-tumor activity. SCID mice engrafted i.p with 3×106 tumor cells marked with Firefly luciferase, showed a rapid increase in signal in the absence of CTLs (Fold increase in luminance = 29.8 median, range 4.4 to 103) by day 14 after tumor engraftment. Similar tumor growth was observed in mice receiving IL7Ra+ CTLs without cytokines (luminance increase14.4 fold, range 1 to 90). In contrast, mice receiving IL7Ra+ CTLs and either IL2 or IL7, had a decline in tumor luminance (fold expansion 0.7, range 0.08 to 2.9, and 0.8, range 0.004 to 3.5, respectively p<0.0001). Although growth of the transgenic T cells remained antigen dependent, as a further safety measure, we incorporated an inducible suicide gene based on icaspase9 that can be activated by exposure to a small chemical inducer of dimerization (CID) (AP20187). Incorporation of this suicide gene did not affect the in vitro or in vivo anti-tumor activity of the CTL’s but allowed them to be rapidly eliminated. So that after a single dose of CID (50 nM) the transgenic population were decreased by >98.5% We conclude that forced expression of the IL-7Ra by CTLs can be used to recapitulate the response of these cells to this cytokine and thereby promote their in vivo anti-tumor activity after adoptive transfer either in a lymphodepleted host or after the administration of the recombinant protein.


1980 ◽  
Vol 152 (4) ◽  
pp. 823-841 ◽  
Author(s):  
E Fernandez-Cruz ◽  
B A Woda ◽  
J D Feldman

Established subcutaneous Moloney sarcomas (MST-1) of large size and long duration were eliminated from syngeneic rats by intravenous infusion of varying numbers of specific syngeneic effector T lymphocytes. Spleen cells from BN rats in which tumor had regressed were cultured in an in vitro mixed lymphocyte tumor cell culture (MLTC) to augment cytotoxicity of effector cells. In the MLTC a T cell subset was expanded in response to MST-1 antigens and transformed into blast elements. With these changes, there was an increase in the W3/25 antigen on the T cell surface, a decrease of W3/13 antigen, and an increase in the number of T cells with Ia antigens. The subset associated with elimination of established tumors was a blast T cell W3/25+, W3/13+, as detected by monoclonal antibodies to rat T antigens. The W3/25+ subset was poorly cytotoxic in vitro for MST-1 and apparently functioned in vivo as an amplifier or helper cell in the tumor-bearing host. The W3/25- population was a melange of cells that included (W3/13+, W3/25-) T cells, null cells, Ig+ cells, and macrophages, and was associated with enhancement of tumor in vivo, suggesting the presence of suppressor cells.


Sign in / Sign up

Export Citation Format

Share Document