scholarly journals Applications of factorization embeddings for Lévy processes

2006 ◽  
Vol 38 (3) ◽  
pp. 768-791 ◽  
Author(s):  
A. B. Dieker

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.

2006 ◽  
Vol 38 (03) ◽  
pp. 768-791 ◽  
Author(s):  
A. B. Dieker

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.


2013 ◽  
Vol 45 (1) ◽  
pp. 86-105
Author(s):  
E. H. A. Dia

The pricing of options in exponential Lévy models amounts to the computation of expectations of functionals of Lévy processes. In many situations, Monte Carlo methods are used. However, the simulation of a Lévy process with infinite Lévy measure generally requires either truncating or replacing the small jumps by a Brownian motion with the same variance. We will derive bounds for the errors generated by these two types of approximation.


2004 ◽  
Vol 41 (04) ◽  
pp. 1191-1198 ◽  
Author(s):  
Xiaowen Zhou

We consider a two-sided exit problem for a Lévy process with no positive jumps. The Laplace transform of the time when the process first exits an interval from above is obtained. It is expressed in terms of another Laplace transform for the one-sided exit problem. Applications of this result are discussed. In particular, a new expression for the solution to the two-sided exit problem is obtained. The joint distribution of the minimum and the maximum values of such a Lévy process is also studied.


2004 ◽  
Vol 41 (4) ◽  
pp. 1191-1198 ◽  
Author(s):  
Xiaowen Zhou

We consider a two-sided exit problem for a Lévy process with no positive jumps. The Laplace transform of the time when the process first exits an interval from above is obtained. It is expressed in terms of another Laplace transform for the one-sided exit problem. Applications of this result are discussed. In particular, a new expression for the solution to the two-sided exit problem is obtained. The joint distribution of the minimum and the maximum values of such a Lévy process is also studied.


2013 ◽  
Vol 45 (01) ◽  
pp. 86-105
Author(s):  
E. H. A. Dia

The pricing of options in exponential Lévy models amounts to the computation of expectations of functionals of Lévy processes. In many situations, Monte Carlo methods are used. However, the simulation of a Lévy process with infinite Lévy measure generally requires either truncating or replacing the small jumps by a Brownian motion with the same variance. We will derive bounds for the errors generated by these two types of approximation.


1993 ◽  
Vol 132 ◽  
pp. 141-153 ◽  
Author(s):  
Toshiro Watanabe

In this paper it is shown that there is a unimodal Levy process with oscillating mode. After the author first constructed an example of such a self-decomposable process, Sato pointed out that it belongs to the class of semi-stable processes with β < 0. We prove that all non-symmetric semi-stable self-decomposable processes with β < 0 have oscillating modes.


2015 ◽  
Vol 47 (01) ◽  
pp. 128-145 ◽  
Author(s):  
Kamille Sofie Tågholt Gad ◽  
Jesper Lund Pedersen

The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore, for some geometric Lévy processes, the problem has a solution only if randomized stopping is allowed. When randomized stopping is allowed, we give a solution to the variance problem. We identify the Lévy processes for which the allowance of randomized stopping times increases the maximum variance. When it does, we also solve the variance problem without randomized stopping.


Author(s):  
John Hawkes

Let Xt be a Lévy process in Rd, d-dimensional euclidean space. That is X is a Markov process whose transition function satisfies


2021 ◽  
Vol 58 (4) ◽  
pp. 868-879
Author(s):  
Boris Buchmann ◽  
Kevin W. Lu

AbstractConsider the strong subordination of a multivariate Lévy process with a multivariate subordinator. If the subordinate is a stack of independent Lévy processes and the components of the subordinator are indistinguishable within each stack, then strong subordination produces a Lévy process; otherwise it may not. Weak subordination was introduced to extend strong subordination, always producing a Lévy process even when strong subordination does not. Here we prove that strong and weak subordination are equal in law under the aforementioned condition. In addition, we prove that if strong subordination is a Lévy process then it is necessarily equal in law to weak subordination in two cases: firstly when the subordinator is deterministic, and secondly when it is pure-jump with finite activity.


Positivity ◽  
2020 ◽  
Author(s):  
Franziska Kühn

AbstractUnder mild assumptions, we establish a Liouville theorem for the “Laplace” equation $$Au=0$$ A u = 0 associated with the infinitesimal generator A of a Lévy process: If u is a weak solution to $$Au=0$$ A u = 0 which is at most of (suitable) polynomial growth, then u is a polynomial. As a by-product, we obtain new regularity estimates for semigroups associated with Lévy processes.


Sign in / Sign up

Export Citation Format

Share Document