scholarly journals Characterization of primary models of human trophoblast

Development ◽  
2021 ◽  
Author(s):  
Megan A. Sheridan ◽  
Xiaohui Zhao ◽  
Ridma C. Fernando ◽  
Lucy Gardner ◽  
Vicente Perez-Garcia ◽  
...  

Although understanding of human placental development is still limited, two models, trophoblast organoids and trophoblast stem cells (TSC) provide new useful tools to study this. Both differentiate from villous cytotrophoblast (VCT) to either extravillous trophoblast (EVT) or syncytiotrophoblast (SCT). Here, we compare transcriptomes and miRNA profiles of these models to identify which trophoblast they resemble in vivo. Our findings indicate that TSC do not readily undergo SCT differentiation and closely resemble cells at the base of the cell columns from where EVT are derived. In contrast, organoids are similar to VCT and undergo spontaneous SCT differentiation. A defining feature of human trophoblast is that VCT and SCT are HLA null whilst EVT express HLA-C, -G, -E molecules. We find that trophoblast organoids retain these in vivo characteristics. In contrast, TSC do express classical HLA-A and HLA-B molecules and still maintain their expression after EVT differentiation with upregulation of HLA-G. Furthermore, HLA expression in TSC differs when grown in 3D rather than 2D suggesting mechanical cues are important. Our results will allow choice of the most suitable model to study trophoblast development, function and pathology.

2021 ◽  
Vol 7 (33) ◽  
pp. eabf4416
Author(s):  
Yanxing Wei ◽  
Tianyu Wang ◽  
Lishi Ma ◽  
Yanqi Zhang ◽  
Yuan Zhao ◽  
...  

Human trophoblast stem cells (hTSCs) provide a valuable model to study placental development and function. While primary hTSCs have been derived from embryos/early placenta, and transdifferentiated hTSCs from naïve human pluripotent stem cells (hPSCs), the generation of hTSCs from primed PSCs is problematic. We report the successful generation of TSCs from primed hPSCs and show that BMP4 substantially enhances this process. TSCs derived from primed hPSCs are similar to blastocyst-derived hTSCs in terms of morphology, proliferation, differentiation potential, and gene expression. We define the chromatin accessibility dynamics and histone modifications (H3K4me3/H3K27me3) that specify hPSC-derived TSCs. Consistent with low density of H3K27me3 in primed hPSC-derived hTSCs, we show that knockout of H3K27 methyltransferases (EZH1/2) increases the efficiency of hTSC derivation from primed hPSCs. Efficient derivation of hTSCs from primed hPSCs provides a simple and powerful model to understand human trophoblast development, including the pathogenesis of trophoblast-related disorders, by generating disease-specific hTSCs.


Reproduction ◽  
2015 ◽  
Vol 150 (5) ◽  
pp. 449-462 ◽  
Author(s):  
J L James ◽  
D G Hurley ◽  
T K J B Gamage ◽  
T Zhang ◽  
R Vather ◽  
...  

The placenta is responsible for all nutrient and gas exchange between mother and baby during pregnancy. The differentiation of specialised placental epithelial cells called trophoblasts is essential for placental function, but we understand little about how these populations arise. Mouse trophoblast stem cells have allowed us to understand many of the factors that regulate murine trophoblast lineage development, but the human placenta is anatomically very different from the mouse, and it is imperative to isolate a human trophoblast stem cell to understand human placental development. Here we have developed a novel methodology to isolate a Hoechst side-population of trophoblasts from early gestation placentae and compared their transcriptome to differentiated trophoblast populations (cytotrophoblasts and extravillous trophoblasts) using microarray technology. Side-population trophoblasts clustered as a transcriptomically distinct population but were more closely related to cytotrophoblasts than extravillous trophoblasts. Side-population trophoblasts up-regulated a number of genes characteristic of trophectoderm and murine trophoblast stem cells in comparison to cytotrophoblasts or extravillous trophoblasts and could be distinguished from both of these more mature populations by a unique set of 22 up-regulated genes, which were enriched for morphogenesis and organ development and the regulation of growth functions. Cells expressing two of these genes (LAMA2 and COL6A3) were distributed throughout the cytotrophoblast layer at the trophoblast/mesenchymal interface. Comparisons to previously published trophoblast progenitor populations suggest that the side-population trophoblasts isolated in this work are a novel human trophoblast population. Future work will determine whether these cells exhibit functional progenitor/stem cell attributes.


2018 ◽  
Vol 11 (6) ◽  
pp. 463-473 ◽  
Author(s):  
Haibo Gao ◽  
Rui Gao ◽  
Linfeng Zhang ◽  
Wenchao Xiu ◽  
Ruge Zang ◽  
...  

Abstract Trophoblast stem cells (TSCs), which can be derived from the trophoectoderm of a blastocyst, have the ability to sustain self-renewal and differentiate into various placental trophoblast cell types. Meanwhile, essential insights into the molecular mechanisms controlling the placental development can be gained by using TSCs as the cell model. Esrrb is a transcription factor that has been shown to play pivotal roles in both embryonic stem cell (ESC) and TSC, but the precise mechanism whereby Esrrb regulates TSC-specific transcriptome during differentiation and reprogramming is still largely unknown. In the present study, we elucidate the function of Esrrb in self-renewal and differentiation of TSCs, as well as during the induced TSC (iTSC) reprogramming. We demonstrate that the precise level of Esrrb is critical for stem state maintenance and further trophoblast differentiation of TSCs, as ectopically expressed Esrrb can partially block the rapid differentiation of TSCs in the absence of fibroblast growth factor 4. However, Esrrb depletion results in downregulation of certain key TSC-specific transcription factors, consequently causing a rapid differentiation of TSCs and these Esrrb-deficient TSCs lose the ability of hemorrhagic lesion formation in vivo. This function of Esrrb is exerted by directly binding and activating a core set of TSC-specific target genes including Cdx2, Eomes, Sox2, Fgfr4, and Bmp4. Furthermore, we show that Esrrb overexpression can facilitate the MEF-to-iTSC conversion. Moreover, Esrrb can substitute for Eomes to generate GEsTM-iTSCs. Thus, our findings provide a better understanding of the molecular mechanism of Esrrb in maintaining TSC self-renewal and during iTSC reprogramming.


2021 ◽  
Author(s):  
Victoria Karakis ◽  
Thomas McDonald ◽  
Abigail Cordiner ◽  
Adam Mischler ◽  
Adriana San Miguel ◽  
...  

AbstractHuman trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we do not utilize transforming growth factor-beta inhibitors or a passage step for EVT differentiation, or forskolin for STB formation. Strikingly, under these conditions, presence of a single additional extracellular cue – lam-inin-1 – switched the terminal differentiation of hTSCs from STB to the EVT lineage. Activation of the sphingosine-1 receptor 3 receptor (S1PR3) using a chemical agonist could drive EVT differentiation of hTSCs in the absence of exogenous laminin, albeit less efficiently. To illustrate the utility of a chemically defined culture system for mechanistic studies, we examined the role of protein kinase C (PKC) signaling during hTSC differentiation to the EVT lineage. Inhibition of PKCα/β signaling significantly reduced HLA-G expression and the formation of HLA-G+ mesen-chymal EVTs during hTSC differentiation mediated by laminin exposure; however, it did not prevent commitment to the EVT lineage or STB differentiation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation, and will enable mechanistic studies in vitro.SignificanceDespite its importance to a healthy pregnancy, early human placental development remains poorly understood. Mechanistic studies are impeded by restrictions on research with human embryos and fetal tissues, and significant differences in placentation between humans and commonly used animal models. In this context, human trophoblast stem cells (hTSCs) have emerged as attractive in vitro models for the epithelial cytotrophoblast of the early gestation human placenta. Here we describe chemically defined culture conditions for differentiation of hTSCs to the two major differentiated cell types – extravillous trophoblast and syncytiotrophoblast. These culture conditions enable in vitro studies to reveal molecular mechanisms regulating hTSC differentiation.


2021 ◽  
Author(s):  
Ruth Hornbachner ◽  
Andreas Lackner ◽  
Sandra Haider ◽  
Martin Knöfler ◽  
Karl Mechtler ◽  
...  

AbstractThe majority of placental pathologies are associated with failures in trophoblast differentiation, yet the underlying transcriptional regulation is poorly understood. Here, we use human trophoblast stem cells to elucidate the function of the transcription factor MSX2 in trophoblast specification. We show that depletion of MSX2 de-represses the syncytiotrophoblast program, while forced expression of MSX2 blocks it. We demonstrate that a large proportion of the affected genes are directly bound and regulated by MSX2 and identify components of the SWI/SNF complex as its strong interactors. Our findings uncover the pivotal role of MSX2 in cell fate decisions that govern human placental development and function.


2020 ◽  
Author(s):  
Gaël Castel ◽  
Dimitri Meistermann ◽  
Betty Bretin ◽  
Julie Firmin ◽  
Justine Blin ◽  
...  

SUMMARYHuman trophoblast stem cells (hTSC) derived from blastocysts and first-trimester cytotrophoblasts offer an unprecedented opportunity to study the human placenta. However, access to human embryos and first trimester placentas is limited thus preventing the establishment of hTSC from a variety of genetic backgrounds associated with placental disorders. In the present study, we show that hTSC can be generated from numerous genetic backgrounds using post-natal cells via two alternative methods: (I) somatic cell reprogramming of adult fibroblasts using the Yamanaka factors, and (II) cell fate conversion of naive and extended pluripotent stem cells. The resulted induced and converted hTSC (hiTSC/hcTSC) recapitulated hallmarks of hTSC including long-term self-renewal, expression of specific transcription factors, transcriptome-side signature, and the potential to differentiate into syncytiotrophoblast and extravillous trophoblast cells. We also clarified the developmental stage of hTSC and show that these cells resemble post-implantation NR2F2+ cytotrophoblasts (day 8-10). Altogether, hTSC lines of diverse genetics origins open the possibility to model both placental development and diseases in a dish.HighlightsReprogramming of human somatic cells to induced hTSC with OSKMConversion of naive and extended hPSC to hTSCGenetic diversity of hTSC linesDevelopmental matching of hTSC in the peri-implantation human embryo


Placenta ◽  
2017 ◽  
Vol 60 ◽  
pp. S57-S60 ◽  
Author(s):  
Ching-Wen Chang ◽  
Mana M. Parast

2020 ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Michael G. Meyer ◽  
Gregory J. Wiepz ◽  
Lindsey N. Block ◽  
Brittany M. Dusek ◽  
...  

AbstractNonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSC) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first trimester placental villous cytotrophoblasts followed by culture in TSC medium to “reprogram” the cells to a proliferative state. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was >4,000-fold higher in ST culture media compared to TSC media. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and macaque placental nonclassical MHC class I molecule, Mamu-AG. TSC differentiation to extravillous trophoblasts (EVTs) with or without the ALK-5 inhibitor A83-01 resulted in differing morphologies but similar expression of Mamu-AG and CD56 as assessed by flow cytometry, hence further refinement of relevant EVT markers is needed. Our preliminary characterization of macaque TSCs suggests that these cells represent a proliferative, self-renewing TSC population capable of differentiating to STs in vitro thereby establishing an experimental model of primate placentation.


2020 ◽  
Vol 25 (6) ◽  
pp. 427-438 ◽  
Author(s):  
Yuhei Yamauchi ◽  
Akihiro Nita ◽  
Masaaki Nishiyama ◽  
Yoshiharu Muto ◽  
Hideyuki Shimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document