trophoblast stem cells
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 78)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Masashi Hada ◽  
Hisashi Miura ◽  
Akie Tanigawa ◽  
Shogo Matoba ◽  
Kimiko Inoue ◽  
...  

The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2–H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.


2022 ◽  
Vol 34 (2) ◽  
pp. 235
Author(s):  
Y. Wang ◽  
L. Yu ◽  
L. Zhu ◽  
H. Ming ◽  
J. Wu ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 100881
Author(s):  
Mei Xu ◽  
Wenhao Zhang ◽  
Mengyang Geng ◽  
Yiding Zhao ◽  
Shengyi Sun ◽  
...  

Author(s):  
Jennie Au ◽  
Daniela F Requena ◽  
Hannah Rishik ◽  
Sampada Kallol ◽  
Chandana Tekkatte ◽  
...  

Abstract The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extra-embryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mTSC and hTSC expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extra-embryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.


2021 ◽  
Author(s):  
Yosef Buganim ◽  
Moriyah Naama ◽  
Ahmed Radwan ◽  
Valery Zayat ◽  
Shulamit Sebban ◽  
...  

Recent studies demonstrated that human trophoblast stem-like cells (hTS-like cells) can be derived from naive embryonic stem cells or be induced from somatic cells by the pluripotency factors, OSKM. This raises two main questions; (i) whether human induced TSCs (hiTSCs) can be generated independently to pluripotent state or factors and (ii) what are the mechanisms by which hTSC state is established during reprogramming. Here, we identify GATA3, OCT4, KLF4 and MYC (GOKM) as a pluripotency-independent combination of factors that can generate stable and functional hiTSCs, from both male and female fibroblasts. By using single and double knockout (KO) fibroblasts for major pluripotency genes (i.e. SOX2 or NANOG/PRDM14) we show that GOKM not only is capable of generating hiTSCs from the KO cells, but rather that the efficiency of the process is increased. Through H3K4me2 and chromatin accessibility profiling we demonstrate that GOKM target different loci and genes than OSKM, and that a significant fraction of them is related to placenta and trophoblast function. Moreover, we show that GOKM exert a greater pioneer activity compared to OSKM. While GOKM target many specific hTSC loci, OSKM mainly target hTSC loci that are shared with hESCs. Finally, we reveal a gene signature of trophoblast-related genes, consisting of 172 genes which are highly expressed in blastocyst-derived TSCs and GOKM-hiTSCs but absent or mildly expressed in OSKM-hiTSCs. Taken together, these results imply that not only is the pluripotent state, and SOX2 specifically, not required to produce functional hiTSCs, but that pluripotency-specific factors actually interfere with the acquisition of the hTSC state during reprogramming.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3085
Author(s):  
Biswas Neupane ◽  
Mona Fendereski ◽  
Farzana Nazneen ◽  
Yan-Lin Guo ◽  
Fengwei Bai

Zika virus (ZIKV) infection during pregnancy can cause devastating fetal neuropathological abnormalities, including microcephaly. Most studies of ZIKV infection in pregnancy have focused on post-implantation stage embryos. Currently, we have limited knowledge about how a pre-implantation stage embryo deals with a viral infection. This study investigates ZIKV infection on mouse trophoblast stem cells (TSCs) and their in vitro differentiated TSCs (DTSCs), which resemble the cellular components of the trophectoderm layer of the blastocyst that later develops into the placenta. We demonstrate that TSCs and DTSCs are permissive to ZIKV infection; however, ZIKV propagated in TSCs and DTSCs exhibit substantially lower infectivity, as shown in vitro and in a mouse model compared to ZIKV that was generated in Vero cells or mouse embryonic fibroblasts (MEFs). We further show that the low infectivity of ZIKV propagated in TSCs and DTSCs is associated with a reduced level of glycosylation on the viral envelope (E) proteins, which are essential for ZIKV to establish initial attachment by binding to cell surface glycosaminoglycans (GAGs). The decreased level of glycosylation on ZIKV E is, at least, partially due to the low-level expression of a glycosylation-related gene, Hexa, in TSCs and DTSCs. Furthermore, this finding is not limited to ZIKV since similar observations have been made as to the chikungunya virus (CHIKV) and West Nile virus (WNV) propagated in TSCs and DTSCs. In conclusion, our results reveal a novel phenomenon suggesting that murine TSCs and their differentiated cells may have adapted a cellular glycosylation system that can limit viral infectivity by altering the glycosylation of viral envelope proteins, therefore serving as a unique, innate anti-viral mechanism in the pre-implantation stage embryo.


2021 ◽  
Author(s):  
Joseph Chen ◽  
Jessica A Neil ◽  
Jia Ping Tan ◽  
Raj Rudraraju ◽  
Monika Mohenska ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has caused a global health crisis. The primary site of infection is in the respiratory tract but the virus has been associated with a variety of complications involving the gastrointestinal and cardiovascular systems. Since the virus affects a variety of tissue types, there has been interest in understanding SARS-CoV-2 infection in early development and the placenta. The expression of ACE2 or TMPRSS2, both genes critical for viral entry, is present in placental-specific cell types such as extravillous trophoblasts (EVTs) and, especially, syncytiotrophoblasts (STs). The potential of SARS-CoV-2 to infect these placental cells and its effect on placental development and function is still unclear. Furthermore, it is crucial to understand the possible mechanism of vertical transmission of SARS-CoV-2 through the placenta. Here, we developed an in vitro model of SARS-CoV-2 infection of placental cell types using induced trophoblast stem cells (iTSCs). This model allowed us to show that STs but not EVTs are infected. Importantly, infected STs lack the expression of key differentiation genes, lack typically observed differentiated morphology and produce significantly lower human chorionic gonadotropin (HCG) compared to non-infected controls. We also show that an anti-ACE2 antibody prevents SARS-CoV-2 infection and restores normal ST differentiation and function. We highlight the establishment of a platform to study SARS-CoV-2 infection in early placental cell types, which will facilitate investigation of antiviral therapy to protect the placenta during early pregnancy and development.


2021 ◽  
Author(s):  
Lindsey Block ◽  
Jenna Kropp Schmidt ◽  
Megan McKeon ◽  
Brittany Bowman ◽  
Gregory Wiepz ◽  
...  

Abstract Zika virus (ZIKV) infection at the maternal-placental interface is associated with adverse pregnancy outcomes including fetal demise and pregnancy loss. To determine how infection impacts placental trophoblasts, we utilized rhesus macaque trophoblast stem cells (TSC) that can be differentiated into early gestation syncytiotrophoblasts (ST) and extravillous trophoblasts (EVT). TSCs and STs, but not EVTs, were highly permissive to productive infection with ZIKV strain DAK AR 41524. The impact of ZIKV on the cellular transcriptome showed that infection of TSCs and STs increased expression of immune related genes, including those involved in type I and type III interferon responses. ZIKV exposure altered extracellular vesicle (EV) protein, mRNA, and miRNA cargo, regardless of productive infection. These findings suggest that early gestation macaque TSCs and STs are permissive to ZIKV infection, and that EV analysis may provide a foundation for identifying non-invasive biomarkers of placental infection in a highly translational model.


Development ◽  
2021 ◽  
Author(s):  
Megan A. Sheridan ◽  
Xiaohui Zhao ◽  
Ridma C. Fernando ◽  
Lucy Gardner ◽  
Vicente Perez-Garcia ◽  
...  

Although understanding of human placental development is still limited, two models, trophoblast organoids and trophoblast stem cells (TSC) provide new useful tools to study this. Both differentiate from villous cytotrophoblast (VCT) to either extravillous trophoblast (EVT) or syncytiotrophoblast (SCT). Here, we compare transcriptomes and miRNA profiles of these models to identify which trophoblast they resemble in vivo. Our findings indicate that TSC do not readily undergo SCT differentiation and closely resemble cells at the base of the cell columns from where EVT are derived. In contrast, organoids are similar to VCT and undergo spontaneous SCT differentiation. A defining feature of human trophoblast is that VCT and SCT are HLA null whilst EVT express HLA-C, -G, -E molecules. We find that trophoblast organoids retain these in vivo characteristics. In contrast, TSC do express classical HLA-A and HLA-B molecules and still maintain their expression after EVT differentiation with upregulation of HLA-G. Furthermore, HLA expression in TSC differs when grown in 3D rather than 2D suggesting mechanical cues are important. Our results will allow choice of the most suitable model to study trophoblast development, function and pathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rongpu Jia ◽  
Yu Gao ◽  
Song Guo ◽  
Si Li ◽  
Liangji Zhou ◽  
...  

Trophoblast stem cells (TSCs) are derived from blastocysts and the extra-embryonic ectoderm (ExE) of post-implantation embryos and play a significant role in fetal development, but the roles that TSCs play in the earlier status of fetal diseases need further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development and may participate in TSC differentiation. We identified key cell identity genes regulated by TSC-SEs via integrated analysis of H3K27ac and H3K4me1 chromatin immunoprecipitation sequencing (ChIP-seq), RNA-sequencing (RNA-seq) and ATAC-sequencing (ATAC-seq) data. The identified key TSC identity genes regulated by SEs, such as epidermal growth factor receptor (EGFR), integrin β5 (ITGB5) and Paxillin (Pxn), were significantly upregulated during TSC differentiation, and the transcription network mediated by TSC-SEs enriched in terms like focal adhesion and actin cytoskeleton regulation related to differentiation of TSCs. Additionally, the increased chromatin accessibility of the key cell identity genes verified by ATAC-seq further demonstrated the regulatory effect of TSC-SEs on TSC lineage commitment. Our results illustrated the significant roles of the TSC-SE-regulated network in TSC differentiation, and identified key TSC identity genes EGFR, ITGB5 and Pxn, providing novel insight into TSC differentiation and lays the foundation for future studies on embryo implantation and related diseases.


Sign in / Sign up

Export Citation Format

Share Document