Immunofluorescence studies on deoxyribonuclease from mouse teratocarcinoma cells during cell differentiation

Development ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 37-46
Author(s):  
L. Soriano ◽  
D. Paulin

Specific anti-DNase-I IgG have been used to detect deoxyribonuclease in teratocarcinoma cells by an indirect immunofluorescence method. All the cells studied show fluorescence staining. However, the patterns are quite different in embryonal carcinoma cells (amorphous cytoplasmic fluorescence and absence of nuclear staining) as compared to differentiated cell lines (diffuse, bright granular nuclear and fibrillar cytoplasmic fluorescence). It is possible by this method to distinguish different cell types derived from the same origin. Deoxyribonuclease from teratocarcinoma cells can therefore be considered as a marker of cell differentiation in this system.

Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 115-122 ◽  
Author(s):  
G. Vidricaire ◽  
K. Jardine ◽  
M.W. McBurney

When aggregated and treated with dimethyl sulfoxide (DMSO), P19 embryonal carcinoma cells differentiate into cell types normally derived from the mesoderm and endoderm including epithelium and cardiac and skeletal muscle. The Brachyury gene is expressed transiently in these differentiating cultures several days before the appearance of markers of the differentiated cell types. The expression of Brachyury is not affected by DMSO but is induced by cell aggregation, which requires extracellular calcium. Expression of Brachyury is also induced by various members of the TGF beta family such as activin and bone morphogenetic proteins. D3 is a mutant clone of P19 cells selected for its failure to differentiate when aggregated in DMSO. Aggregated D3 cells express Brachyury mRNA suggesting that the mutation(s) responsible for the phenotype of D3 cells is downstream of the chain of events initiated by Brachyury expression.


1990 ◽  
Vol 10 (8) ◽  
pp. 4058-4067 ◽  
Author(s):  
T S Bladon ◽  
C J Frégeau ◽  
M W McBurney

B2 genes are short repeated sequences which are transcribed by RNA polymerase III. Abundant transcripts accumulate in embryonic and transformed cells, but transcripts are rare or absent from normal differentiated cell types. During retinoic acid-induced differentiation of P19 embryonal carcinoma cells, an early transient increase in B2 RNA levels is followed by a rapid drop in expression. The marked changes in B2 RNA levels are most likely due to transcriptional modulation since B2 RNA stabilities are unaffected by differentiation. At least four short-lived B2 RNAs with apparent lengths of 150, 180, 240, and 500 nucleotides were characterized. The two larger RNAs are polyadenylated and are more stable in cells. A cDNA of a B2 gene was isolated which was over 99% identical to the consensus sequence. This B2 cDNA can be transcribed in human cells and yields at least two distinct transcripts. We propose a model for B2 RNA metabolism which describes transcription, posttranscriptional modification and processing, and nucleocytoplasmic transport.


1988 ◽  
Vol 39 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Martin F. Pera ◽  
Maria Jose Blasco-Lafita ◽  
Susan Cooper ◽  
Malcolm Mason ◽  
Judith Mills ◽  
...  

1982 ◽  
Vol 94 (2) ◽  
pp. 253-262 ◽  
Author(s):  
E M Jones-Villeneuve ◽  
M W McBurney ◽  
K A Rogers ◽  
V I Kalnins

Murine embryonal carcinoma cells can differentiate into a varied spectrum of cell types. We observed the abundant and precocious development of neuronlike cells when embryonal carcinoma cells of various pluripotent lines were aggregated and cultured in the presence of nontoxic concentrations of retinoic acid. Neuronlike cells were also formed in retinoic acid-treated cultures of the embryonal carcinoma line, P19, which does not differentiate into neurons in the absence of the drug. The neuronal nature of these cells was confirmed by their staining with antiserum directed against neurofilament protein in indirect immunofluorescence experiments. Retinoic acid-treated cultures also contained elevated acetylcholinesterase activity. Glial cells, identified by immunofluorescence analysis of their intermediate filaments, and a population of fibroblastlike cells were also present in retinoic acid-treated cultures of P19 cells. We did not observe embryonal carcinoma, muscle, or epithelial cells in these cultures. Neurons and glial cells appeared in cultures exposed to retinoic acid for as little as 48 h. We found no evidence for retinoic acid toxicity, suggesting that the effect of the drug was to induce the development of neurons and glia rather than to select against cells differentiating along other developmental pathways.


1990 ◽  
Vol 10 (8) ◽  
pp. 4058-4067
Author(s):  
T S Bladon ◽  
C J Frégeau ◽  
M W McBurney

B2 genes are short repeated sequences which are transcribed by RNA polymerase III. Abundant transcripts accumulate in embryonic and transformed cells, but transcripts are rare or absent from normal differentiated cell types. During retinoic acid-induced differentiation of P19 embryonal carcinoma cells, an early transient increase in B2 RNA levels is followed by a rapid drop in expression. The marked changes in B2 RNA levels are most likely due to transcriptional modulation since B2 RNA stabilities are unaffected by differentiation. At least four short-lived B2 RNAs with apparent lengths of 150, 180, 240, and 500 nucleotides were characterized. The two larger RNAs are polyadenylated and are more stable in cells. A cDNA of a B2 gene was isolated which was over 99% identical to the consensus sequence. This B2 cDNA can be transcribed in human cells and yields at least two distinct transcripts. We propose a model for B2 RNA metabolism which describes transcription, posttranscriptional modification and processing, and nucleocytoplasmic transport.


1983 ◽  
Vol 3 (12) ◽  
pp. 2259-2270
Author(s):  
F J Benham ◽  
M V Wiles ◽  
P N Goodfellow

The mouse embryonal carcinoma (EC) line, PCC4, was used to construct a series of somatic cell hybrids which contain a single or a few human chromosomes. The hybrids all retained the EC phenotype as determined by morphology, expression of SSEA-1, lack of cell surface H-2 antigen and cytokeratin filaments, high alkaline phosphatase levels, the ability to form EC tumors ectopically in nude mice, and the ability to differentiate in response to retinoic acid. Constitutively differentiated cloned lines were derived from retinoic acid-treated hybrid cultures. Several derived lines had a phenotype indistinguishable from that of parietal endoderm cells, which includes synthesis of large amounts of laminin, type IV procollagen, and plasminogen activator. One differentiated line showed a fibroblast-like morphology. The differentiated lines derived from two of the hybrids, MCP6 and GEOC4, stably maintained the sole human chromosomal component present in the EC progenitors. These EC hybrids therefore provide a system to study developmental regulation of the introduced and stably maintained human genetic material derived from a variety of cell types.


1991 ◽  
Vol 11 (1) ◽  
pp. 192-201 ◽  
Author(s):  
R de Groot ◽  
N Foulkes ◽  
M Mulder ◽  
W Kruijer ◽  
P Sassone-Corsi

Proteins encoded by the adenovirus E1A oncogene are capable of positive and negative transcriptional regulation of both viral and cellular genes. E1A regulatory function is commonly thought to involve modifications of specific cellular factors that interact with responsive promoters. In this report we present evidence that E1A induces the activity of the jun/AP-1 transcription factor in three different cell types: P19, JEG-3, and HeLa. AP-1 binds to 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs); therefore, E1A might modulate a specific signal transduction pathway normally induced by activation of the protein kinase C. Binding of jun/AP-1 to a TRE is induced in all cell types studied when E1A is expressed. We observe that the expression of endogenous c-jun and jun B genes is induced by E1A, which directly transactivates the promoters of c-fos, c-jun, and jun B. Similar inducibility is obtained by treatment with retinoic acid and differentiation of P19-embryonal carcinoma cells. The E1A 13S product transactivates TRE sequences and cooperates with c-jun in the transcriptional stimulation. The 12S E1A product does not activate a TRE sequence, but cotransfection with c-jun circumvents this lack of stimulation. Coexpression of c-fos and E1A 12S, however, blocks the transactivation by c-jun, suggesting an important role for fos in determining the dominance of the 12S or 13S protein.


1983 ◽  
Vol 3 (12) ◽  
pp. 2259-2270 ◽  
Author(s):  
F J Benham ◽  
M V Wiles ◽  
P N Goodfellow

The mouse embryonal carcinoma (EC) line, PCC4, was used to construct a series of somatic cell hybrids which contain a single or a few human chromosomes. The hybrids all retained the EC phenotype as determined by morphology, expression of SSEA-1, lack of cell surface H-2 antigen and cytokeratin filaments, high alkaline phosphatase levels, the ability to form EC tumors ectopically in nude mice, and the ability to differentiate in response to retinoic acid. Constitutively differentiated cloned lines were derived from retinoic acid-treated hybrid cultures. Several derived lines had a phenotype indistinguishable from that of parietal endoderm cells, which includes synthesis of large amounts of laminin, type IV procollagen, and plasminogen activator. One differentiated line showed a fibroblast-like morphology. The differentiated lines derived from two of the hybrids, MCP6 and GEOC4, stably maintained the sole human chromosomal component present in the EC progenitors. These EC hybrids therefore provide a system to study developmental regulation of the introduced and stably maintained human genetic material derived from a variety of cell types.


Sign in / Sign up

Export Citation Format

Share Document