p19 cells
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 17)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianglin Mei ◽  
Hanhan Zhao ◽  
Huihan Ai ◽  
Shuyue Wang ◽  
Zhenbo Song ◽  
...  

Abstract Background Stem cells have been extensively explored for a variety of regenerative medical applications and they play an important role in clinical treatment of many diseases. However, the limited amount of stem cells and their tendency to undergo spontaneous differentiation upon extended propagation in vitro restrict their practical application. Octamer-binding transcription factor-4 (Oct4), a transcription factor belongs to the POU transcription factor family Class V, is fundamental for maintaining self-renewal ability and pluripotency of stem cells. Methods In the present study, we used the previously constructed luciferase reporters driven by the promoter and 3’-UTR of Oct4 respectively to screen potential activators of Oct4. Colony formation assay, sphere-forming ability assay, alkaline phosphatase (AP) activity assay and teratoma-formation assay were used to assess the role of modaline sulfate (MDLS) in promoting self-renewal and reinforcing pluripotency of P19 cells. Immunofluorescence, RT-PCR, and western blotting were used to measure expression changes of stem-related genes and activation of related signaling pathways. Results We screened 480 commercially available small-molecule compounds and discovered that MDLS greatly promoted the expression of Oct4 at both mRNA and protein levels. Moreover, MDLS significantly promoted the self-renewal capacity of P19 cells. Also, we observed that the expression of pluripotency markers and alkaline phosphatase (AP) increased significantly in MDLS-treated colonies. Furthermore, MDLS could promote teratoma formation and enhanced differentiation potential of P19 cells in vivo. In addition, we found that in the presence of LIF, MDLS could replace feeder cells to maintain the undifferentiated state of OG2-mES cells (Oct4-GFP reporter gene mouse embryonic stem cell line), and the MDLS-expanded OG2-mES cells showed an elevated expression levels of pluripotency markers in vitro. Finally, we found that MDLS promoted Oct4 expression by activating JAK/STAT3 and classic Wnt signaling pathways, and these effects were reversed by treatment with inhibitors of corresponding signaling pathways. Conclusions These findings demonstrated, for the first time, that MDLS could maintain self-renewal and pluripotency of stem cells.


Author(s):  
Xinyue Li ◽  
Guangyu Ji ◽  
Juan Zhou ◽  
Jingyi Du ◽  
Xian Li ◽  
...  

The neural induction constitutes the initial step in the generation of the neural tube. Pcgf1, as one of six Pcgf paralogs, is a maternally expressed gene, but its role and mechanism in early neural induction during neural tube development have not yet been explored. In this study, we found that zebrafish embryos exhibited a small head and reduced or even absence of telencephalon after inhibiting the expression of Pcgf1. Moreover, the neural induction process of zebrafish embryos was abnormally activated, and the subsequent NSC self-renewal was inhibited after injecting the Pcgf1 MO. The results of in vitro also showed that knockdown of Pcgf1 increased the expression levels of the neural markers Pax6, Pou3f1, and Zfp521, but decreased the expression levels of the pluripotent markers Oct4, Hes1, and Nanog, which further confirmed that Pcgf1 was indispensable for maintaining the pluripotency of P19 cells. To gain a better understanding of the role of Pcgf1 in early development, we analyzed mRNA profiles from Pcgf1-deficient P19 cells using RNA-seq. We found that the differentially expressed genes were enriched in many functional categories, which related to the development phenotype, and knockdown of Pcgf1 increased the expression of histone demethylases. Finally, our results showed that Pcgf1 loss-of-function decreased the levels of transcriptional repression mark H3K27me3 at the promoters of Ngn1 and Otx2, and the levels of transcriptional activation mark H3K4me3 at the promoters of Pou5f3 and Nanog. Together, our findings reveal that Pcgf1 might function as both a facilitator for pluripotent maintenance and a repressor for neural induction.


2020 ◽  
pp. jbc.RA120.015864
Author(s):  
Hideo Mochizuki ◽  
Hideyuki Futatsumori ◽  
Eriko Suzuki ◽  
Koji Kimata

Heparan sulfate is synthesized by most animal cells and interacts with numerous proteins via specific sulfation motifs to regulate various physiological processes. Various 3-O-sulfated motifs are considered to be key in controlling the binding specificities to the functional proteins. One such motif, synthesized by 3-O-sulfotransferase-1 (3OST-1) serves as a binding site for antithrombin (AT), and has been thoroughly studied because of its pharmacological importance. However, the physiological roles of 3-O-sulfates produced by other 3OST isoforms, which do not bind AT, remain obscure, in part due to the lack of a standard method to analyze this rare modification. This study aims to establish a method for quantifying 3-O-sulfated components of heparan sulfate, focusing on non-AT-binding units. We previously examined the reaction products of human 3OST isoforms and identified five 3-O-sulfated components, including three non-AT-binding disaccharides and two AT-binding tetrasaccharides, as digestion products of heparin lyases. In this study, we prepared these five components as a standard saccharide for HPLC analysis. Together with eight non-3-O-sulfated disaccharides, a standard mixture of thirteen units was prepared. Using reverse-phase ion-pair HPLC with a post-column fluorescent labeling system, the separation conditions were optimized to quantify the thirteen units. Finally, we analyzed the compositional changes of 3-O-sulfated units in heparan sulfate from P19 cells before and after neuronal differentiation. We successfully detected the 3-O-sulfated units specifically expressed in the differentiated neurons. This is the first report that shows the quantification of three non-AT-binding 3-O-sulfated units, and establishes a new approach to explore the physiological functions of 3-O-sulfate.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Donghee Kang ◽  
Wonjung Shin ◽  
Hyunjeong Yoo ◽  
Seongjae Kim ◽  
Seongju Lee ◽  
...  

Abstract Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specific subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological differentiation of astrocytes. Cep215 was specifically localized at the glial processes as well as centrosomes in developing astrocytes. Morphological differentiation of astrocytes was suppressed in the Cep215-deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confirm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specification. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte differentiation.


2020 ◽  
Vol 21 (19) ◽  
pp. 7192
Author(s):  
Paweł Leszczyński ◽  
Magdalena Śmiech ◽  
Aamir Salam Teeli ◽  
Effi Haque ◽  
Robert Viger ◽  
...  

PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.


2020 ◽  
Vol 19 (2) ◽  
pp. 72-77
Author(s):  
O. L. Nosareva ◽  
D. S. Orlov ◽  
E. V. Shakhristova ◽  
E. A. Stepovaya

2020 ◽  
Vol 19 (3) ◽  
pp. 102-108
Author(s):  
O. L. Nosareva ◽  
D. S. Orlov ◽  
E. V. Shakhristova ◽  
E. A. Stepovaya ◽  
A. A. Sadykova

Introduction. Hypoxia in tumor growth contributes to mitochondrial dysfunction and exacerbates oxidative stress in the immortalized cell. The objective of the study was to investigate the molecular mechanisms of the effects of N-acetylcysteine on redox regulation of tumor cell apoptosis under hypoxia.Material and Methods. P19 cells (mouse teratocarcinoma) cultured under hypoxia served as the material for the study. The redox status was modulated with N-acetylcysteine in the final concentration of 5 mM. The level of reactive oxygen species, concentration of calcium ions, transmembrane potential and the number of CD95-, CD120- and Annexin V-positive cells were determined by flow cytometry. The concentration of glutathione system components as well as the levels of protein SH groups and protein carbonyl derivatives were measured by spectrophotometry.Results. The use of N-acetylcysteine under hypoxic conditions was accompanied by the increased total glutathione concentration and protein SH groups levels, decreased levels of Са2+ ions, proteinbound glutathione and protein carbonyl derivatives, as well as the production of reactive oxygen species and more appropriate functioning of P19 cells mitochondria. N-acetylcysteine contributed to the development of additional resistance of P19 cells to apoptosis under hypoxia.Conclusion. The alteration in the state of the glutathione system under hypoxia influences the changes in tumor cell metabolism on the whole and promotes formation of additional mechanisms to escape apoptosis. 


Data in Brief ◽  
2020 ◽  
Vol 29 ◽  
pp. 105367
Author(s):  
Zahra Hosseininia ◽  
Sara Soltanian ◽  
Naser Mahdavi-Shahri ◽  
Hesam Dehghani
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kobra Alizadeh ◽  
Qin Sun ◽  
Tabitha McGuire ◽  
Terry Thompson ◽  
Frank S. Prato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document