acetylcholinesterase activity
Recently Published Documents


TOTAL DOCUMENTS

1812
(FIVE YEARS 257)

H-INDEX

71
(FIVE YEARS 8)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zubair Suleman ◽  
Godwill A. Engwa ◽  
Mathulo Shauli ◽  
Hannibal T. Musarurwa ◽  
Ndinashe A. Katuruza ◽  
...  

Abstract Background Though Lippia javanica (Burm.f.) Spreng antioxidant activity has been demonstrated, its effect in protecting the brain from lead (Pb)-induced oxidative damage is unknown. This study investigated the effect of L. javanica against Pb-induced oxidative stress, inflammation, apoptosis and acetylcholinesterase activity in rat’s brain. Methods L. javanica herbal tea infusion was prepared, its phytochemical constituent was revealed by liquid chromatography-Mass spectrometer (LC-MS) and was administered simultaneously with Pb. Four groups of male Wistar rats (n = 5/group) were used: control received distilled water; Pb-acetate group received 50 mg Pb/ Kg bodyweight (bw), treatment group received 50 mg Pb/ Kg Pb-acetate + 5 ml/kg bw L. javanica and L. javanica group received 5 ml/Kg bw of L. javanica tea infusion only. After 6 weeks of treatment, oxidative status, acetylcholinesterase activity, inflammation and apoptosis was assessed in brain tissue which was also histologically examined. Results Mean brain and heart weight was reduced (p < 0.05) while liver and spleen weights were increased (p < 0.05) in Pb exposed animals but were prevented by L. juvanica treatment. Treatment with L. javanica increased (p < 0.05) overall brain antioxidant status (glutathione and superoxide dismutase activities) and reduced lipid peroxidation (p < 0.05) compared to the Pb exposed animals. Pro-inflammatory cytokine tumour necrotic factor-alpha, pro-apoptosis Bax protein and anticholinesterase activity were reduced (p < 0.05) in Pb-L. javanica treated animals compared to the Pb exposed group. Histological examination confirmed neuroprotective effects of L. javanica as evidenced by reduced apoptosis/necrosis and inflammation-induced vacuolization and oedema in the hippocampus. The L. javanica treatment alone had no detrimental effects to the rats. LC-MS analysis revealed L. javanica to be rich in phenolics. Conclusions This study demonstrated that L. javanica, rich in phenolics was effective in reducing Pb-induced brain oxidative stress, inflammation, apoptosis, acetylcholinesterase activity and neuronal damage.


2022 ◽  
Vol 52 (1) ◽  
pp. 73-76
Author(s):  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Natasa Mohd Shakri ◽  
Mohd Azlan Nafiah ◽  
Shamsul Khamis

This study was carried out to investigate the phytochemicals from Polyalthia sumatrana and their acetylcholinesterase inhibitory activity. Fractionation and purification of the leaves of P. sumatrana led to the isolation and identification of five alkaloids; boldine (1), norboldine (2), liriodenine (3), predicentrine (4), laurotetanine (5) together with β-sitosterol (6), β-sitostenone (7), vanillin (8), vanillic acid (9) and cinnamic acid (10). The structures of these compounds were obtained by analysis of their spectroscopic data, as well as the comparison with that of reported data. Acetylcholinesterase inhibitory activity revealed that all isolated alkaloids were found to inhibit AChE with percentage inhibition values ranged from 45.0 to 80.6%.


2022 ◽  
Vol 82 ◽  
Author(s):  
R. Jaouani ◽  
M. Dellali ◽  
C. Mouneyrac ◽  
S. Ben Hassine ◽  
M. Ben Ali ◽  
...  

Abstract The cockle Cerastoderma edule was exposed to four concentrations (5, 10, 20 and 70 μg L-1) of carbamazepine (CBZ). This anticonvulsant was found to alter the mussel behavior of by reducing its clearance rate (CR). Analysis of CBZ accumulation in tissues of C. edule was carried out using HPLC-UV after 48 or 96 hours of exposure. In addition, an overproduction of H2O2 by the bivalves was detected following exposure to CBZ but nitrite levels remained unchanged. Moreover, superoxide dismutase and catalase activities showed a significant increase in relation to their contact with CBZ. The activity of the biotransformation enzyme gluthatione-S-transferase did not change during exposure. Malondialdehyde (MDA) levels indicating cellular damage, increased when bivalves were exposed to 20 and 70 μg l-1 of carbamazepine for 96 h CBZ. The results also indicate that acetylcholinesterase activity (AChE) was inhibited in all CBZ concentrations during the 48 h exposure period. However, during the 96 h exposure period, AChE was only inhibited at the highest concentration. Further studies are needed now for more exploration of the toxicity of CBZ since it could be bioaccumulable throughout the food web and may affect non-target organisms.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Serisha Gangaram ◽  
Yougasphree Naidoo ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

Plant species belonging to the family Acanthaceae are globally known to possess various medicinal properties and have cultural and economic importance in both traditional medicine and horticulture. They are important to both animals and humans and are used as food or for ornamental purposes worldwide. Barleria is the third largest genus in the family Acanthaceae. A few of the highly important and reported species of Barleria include B. prionitis, B. cristata, B. grandiflora, and B. lupulina. The flowers, leaves, stems, roots, and seed extracts of plants belonging to this genus are rich in bioactive compounds and have exhibited significant medicinal potential for the treatment of various ailments and infections. Evidence derived from several studies has demonstrated the antioxidant, antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic, antiulcer, hepatoprotective, analgesic, antiamoebic, antihelminthic, antiarthritic, antihypertensive, antiviral properties and toxicity of extracts, in addition inhibition of acetylcholinesterase activity and biosynthesis of nanoparticles, of the plant and seed extracts of species belonging to Barleria. Studies have reported that bioactive compounds such as flavonoids, quinones, iridoids, phenylethanoid glycosides, the immunostimulant protein “Sankaranin”, and antibiotics isolated from Barleria species are resposnsible for the above biological activities. Traditionally, the genus Barleria has significant medicinal potential; however, there is a scarcity of information on various species that are yet to be evaluated. This review provides a comprehensive report on existing literature, concerning the phytochemistry and biological activities of the genus Barleria.


2021 ◽  
Vol 66 (12) ◽  
pp. 718-721
Author(s):  
Larisa Mikhailovna Obukhova ◽  
I. A. Medyanik ◽  
K. N. Kontorshchikova ◽  
S. A. Simagina ◽  
L. T. Musaelyan ◽  
...  

It has been established that the non-neuronal cholinergic system is related to the oncogenesis which increases the attractiveness of its components as the promising markers of oncologic diseases. The purpose of this work is to evaluate the clinical significance of the analysis of the activity of acetyl cholinesterase as a new marker of gliomas. The activity of acetyl cholinesterase was assessed by photo colorimetric analysis according to the Hestrin method recalculating the activity of the enzyme in the tumor tissue per 1 g of protein, and in the blood - by 0.1 g of hemoglobin. The data obtained in the primary tumors of the brain (28) in the tissue of the brain of persons who died as a result of injury (6) and in whole blood of patients with gliomas (28) and practically healthy people (10) were compared with the use of a number of statistical programs. A significant decrease in the activity of acetyl cholinesterase in tumor tissue and in whole blood is revealed as the degree of anaplasia of tumors increases, starting with Grade II. It is for the first time that a significant direct correlation was noted showing the consistency between the decrease in the activity of acetyl cholinesterase in the tumor tissue of the brain and blood. Bioinformatic analysis showed the connection of the enzyme of acetyl cholinesterase with proteins of the PI3K-AKT and Notch signaling pathways providing antiapoptotic and proliferative effects. The found dependences provide new insights into understanding of the mechanisms of gliomas genesis and can be used for selection of new diagnostic markers of brain tumors.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Min-Jeong Kim ◽  
Eun-Sang Hwang ◽  
Kwan Joong Kim ◽  
Sungho Maeng ◽  
Ho Jin Heo ◽  
...  

Epigallocatechin gallate (EGCG) is a major flavan-3-ol of green tea polyphenols that exhibits various beneficial health effects, including antioxidant, anti-bacterial, and anti-inflammatory properties. This study aimed to evaluate whether EGCG prevents scopolamine-induced learning and memory impairment in in vivo and ex vivo models. Male Sprague-Dawley (SD) rats were pre-treated with EGCG (5 mg/kg/day; intraperitoneal injection (i.p.)) for 10 days. Then, EGCG and scopolamine (1 mg/kg/day; i.p.) were applied 60 and 30 min before the behavioral tests, respectively, for another 9 days. EGCG alleviated the cognitive deficits in the Y-maze, passive avoidance, and Morris water maze tests. EGCG showed improved cholinergic functions by decreasing acetylcholinesterase activity in hippocampi dissected from the brain of the rats after the behavioral tests. EGCG also reduced oxidative stress, partly due to increased superoxide dismutase activity and decreased malondialdehyde level in the hippocampi of the rat brains after the behavioral tests. Furthermore, EGCG attenuated the scopolamine-induced blockade of long-term potentiation in organotypic hippocampal tissue of seven-day-old SD rats. Taken together, these results suggested that EGCG is a potential therapeutic agent for alleviating cognitive dysfunction.


2021 ◽  
Vol 23 (1) ◽  
pp. 31
Author(s):  
Marie Closset ◽  
Katia Cailliau ◽  
Sylvain Slaby ◽  
Matthieu Marin

Aluminium (Al) is the most common natural metallic element in the Earth’s crust. It is released into the environment through natural processes and human activities and accumulates in aquatic environments. This review compiles scientific data on the neurotoxicity of aluminium contamination on the nervous system of aquatic organisms. More precisely, it helps identify biomarkers of aluminium exposure for aquatic environment biomonitoring in freshwater aquatic vertebrates. Al is neurotoxic and accumulates in the nervous system of aquatic vertebrates, which is why it could be responsible for oxidative stress. In addition, it activates and inhibits antioxidant enzymes and leads to changes in acetylcholinesterase activity, neurotransmitter levels, and in the expression of several neural genes and nerve cell components. It also causes histological changes in nerve tissue, modifications of organism behaviour, and cognitive deficit. However, impacts of aluminium exposure on the early stages of aquatic vertebrate development are poorly described. Lastly, this review also poses the question of how accurate aquatic vertebrates (fishes and amphibians) could be used as model organisms to complement biological data relating to the developmental aspect. This “challenge” is very relevant since freshwater pollution with heavy metals has increased in the last few decades.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 679
Author(s):  
Hanen Smii ◽  
Abdelhafidh Khazri ◽  
Manel Ben Ben Ali ◽  
Amine Mezni ◽  
Amor Hedfi ◽  
...  

The current work investigated the ecotoxicological effects induced by Titanium Dioxide (TiO2) nanoparticles (NPs), used at three different concentrations (C1 = 10 μg·L−1, C2 = 100 μg·L−1 and C3 = 1000 μg·L−1) in a laboratory experiment, on the freshwater mussel Unio ravoisieri. Biochemical analyses of gills and digestive glands revealed a stress-related disruption of the antioxidant system. The catalase activity and the rates of malonedialdehyde and hydrogen peroxide production were significantly higher in both organs following the exposure to TiO2 NPs and was concentration-dependent. In addition, based on the observed changes in acetylcholinesterase activity, it can be concluded that the disturbance threshold for the cholinergic system was less than 1 mg·L−1 of TiO2. Overall, the results suggest that the mussel Unio ravoisieri could be used as a sentinel species in monitoring surveys assessing the environmental impact of metallic nanoparticles in freshwater systems.


Sign in / Sign up

Export Citation Format

Share Document