The relationship between mechanical work and energy expenditure of locomotion in horses

1999 ◽  
Vol 202 (17) ◽  
pp. 2329-2338 ◽  
Author(s):  
A.E. Minetti ◽  
L.P. Ardigò ◽  
E. Reinach ◽  
F. Saibene

Three-dimensional motion capture and metabolic assessment were performed on four standardbred horses while walking, trotting and galloping on a motorized treadmill at different speeds. The mechanical work was partitioned into the internal work (W(INT)), due to the speed changes of body segments with respect to the body centre of mass, and the external work (W(EXT)), due to the position and speed changes of the body centre of mass with respect to the environment. The estimated total mechanical work (W(TOT)=W(INT)+W(EXT)) increased with speed, while metabolic work (C) remained rather constant. As a consequence, the ‘apparent efficiency’ (eff(APP)=W(TOT)/C) increased from 10 % (walking) to over 100 % (galloping), setting the highest value to date for terrestrial locomotion. The contribution of elastic structures in the horse's limbs was evaluated by calculating the elastic energy stored and released during a single bounce (W(EL,BOUNCE)), which was approximately 1.23 J kg(−)(1) for trotting and up to 6 J kg(−)(1) for galloping. When taking into account the elastic energy stored by the spine bending and released as W(INT), as suggested in the literature for galloping, W(EL,BOUNCE) was reduced by 0.88 J kg(−)(1). Indirect evidence indicates that force, in addition to mechanical work, is also a determinant of the metabolic energy expenditure in horse locomotion.

2018 ◽  
Author(s):  
Allison H. Gruber ◽  
Brian R. Umberger ◽  
Ross H. Miller ◽  
Joseph Hamill

ABSTRACTForefoot running is advocated to improve running economy because of increased elastic energy storage than rearfoot running. This claim has not been assessed with methods that predict the elastic energy contribution to positive work or estimate muscle metabolic cost. The purpose of this study was to compare the mechanical work and metabolic cost of the gastrocnemius and soleus between rearfoot and forefoot running. Seventeen rearfoot and seventeen forefoot runners ran over-ground with their habitual footfall pattern (3.33-3.68m•s−1) while collecting motion capture and ground reaction force data. Ankle and knee joint angles and ankle joint moments served as inputs into a musculoskeletal model that calculated the mechanical work and metabolic energy expenditure of each muscle using Hill-based muscle models with contractile (CE) and series elastic (SEE) elements. A mixed-factor ANOVA assessed the difference between footfall patterns and groups (α=0.05). Forefoot running resulted in greater SEE mechanical work in the gastrocnemius than rearfoot running but no differences were found in CE mechanical work or CE metabolic energy expenditure. Forefoot running resulted in greater soleus SEE and CE mechanical work and CE metabolic energy expenditure than rearfoot running. The metabolic cost associated with greater CE velocity, force production, and activation during forefoot running may outweigh any metabolic energy savings associated with greater SEE mechanical work. Therefore, there was no energetic benefit at the triceps surae for one footfall pattern or the other. The complex CE-SEE interactions must be considered when assessing muscle metabolic cost, not just the amount of SEE strain energy.


2006 ◽  
Vol 31 (5) ◽  
pp. 631-634 ◽  
Author(s):  
Masahiro Kaneko ◽  
Kazuki Miyatsuji ◽  
Satoru Tanabe

To estimate energy cost of a gymnastic-like exercise performed by an astronaut during spaceflight (cosmic exercise), energy expenditure was determined by measuring mechanical work done around the center of mass (COM) of the body. The cosmic exercise, which consisted of whole-body flexion and extension, was performed during a spaceflight and recorded with a video camera. By analyzing the videotape, the internal mechanical work (Wint) against inertia load of the body segments was calculated. To compare how human muscles work on Earth, a motion similar to the cosmic exercise was performed by a control subject who had a physique similar to that of the astronaut. The total mechanical power of the astronaut was determined to be about 119 W; although the control subject showed a similar total power value, half of the power was external work (Wext) against gravitational load. By assuming a mechanical efficiency of 0.25, the energy expenditure was estimated to be 476 W or 7.7 W/kg, which is equivalent to that expended during fast walking and half of that used during moderate-speed running. Our results suggest that this form of cosmic exercise is appropriate for astronauts in space and can be performed safely, as there are no COM shifts while floating in a spacecraft and no vibratory disturbance.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7748 ◽  
Author(s):  
Valentina Silva-Pereyra ◽  
C Gabriel Fábrica ◽  
Carlo M. Biancardi ◽  
Fernando Pérez-Miles

Background The mechanics and energetics of spider locomotion have not been deeply investigated, despite their importance in the life of a spider. For example, the reproductive success of males of several species is dependent upon their ability to move from one area to another. The aim of this work was to describe gait patterns and analyze the gait parameters of Eupalaestrus weijenberghi (Araneae, Theraphosidae) in order to investigate the mechanics of their locomotion and the mechanisms by which they conserve energy while traversing different inclinations and surfaces. Methods Tarantulas were collected and marked for kinematic analysis. Free displacements, both level and on an incline, were recorded using glass and Teflon as experimental surfaces. Body segments of the experimental animals were measured, weighed, and their center of mass was experimentally determined. Through reconstruction of the trajectories of the body segments, we were able to estimate their internal and external mechanical work and analyze their gait patterns. Results Spiders mainly employed a walk-trot gait. Significant differences between the first two pairs and the second two pairs were detected. No significant differences were detected regarding the different planes or surfaces with respect to duty factor, time lags, stride frequency, and stride length. However, postural changes were observed on slippery surfaces. The mechanical work required for traversing a level plane was lower than expected. In all conditions, the external work, and within it the vertical work, accounted for almost all of the total mechanical work. The internal work was extremely low and did not rise as the gradient increased. Discussion Our results support the idea of considering the eight limbs functionally divided into two quadrupeds in series. The anterior was composed of the first two pairs of limbs, which have an explorative and steering purpose and the posterior was more involved in supporting the weight of the body. The mechanical work to move one unit of mass a unit distance is almost constant among the different species tested. However, spiders showed lower values than expected. Minimizing the mechanical work could help to limit metabolic energy expenditure that, in small animals, is relatively very high. However, energy recovery due to inverted pendulum mechanics only accounts for only a small fraction of the energy saved. Adhesive setae present in the tarsal, scopulae, and claw tufts could contribute in different ways during different moments of the step cycle, compensating for part of the energetic cost on gradients which could also help to maintain constant gait parameters.


1994 ◽  
Vol 195 (1) ◽  
pp. 211-225 ◽  
Author(s):  
A E Minetti ◽  
L P Ardigò ◽  
F Saibene

The metabolic cost and the mechanical work of running at different speeds and gradients were measured on five human subjects. The mechanical work was partitioned into the internal work (Wint) due to the speed changes of body segments with respect to the body centre of mass and the external work (Wext) due to the position and speed changes of the body centre of mass in the environment. Wext was further divided into a positive part (W+ext) and a negative part (W-ext), associated with the energy increases and decreases, respectively, over the stride period. For all constant speeds, the most economical gradient was -10.6 +/-0.5% (S.D., N = 5) with a metabolic cost of 146.8 +/- 3.8 ml O2 kg-1 km-1. At each gradient, there was a unique W+ext/W-ext ratio (which was 1 in level running), irrespective of speed, with a tendency for W-ext and W+ext to disappear above a gradient of +30% and below a gradient of -30%, respectively. Wint was constant within each speed from a gradient of -15% to level running. This was the result of a nearly constant stride frequency at all negative gradients. The constancy of Wint within this gradient range implies that Wint has no role in determining the optimum gradient. The metabolic cost C was predicted from the mechanical experimental data according to the following equation: [formula: see text] where eff- (0.80), eff+ (0.18) and effi (0.30) are the efficiencies of W-ext, W+ext and Wint, respectively, and el- and el+ represent the amounts of stored and released elastic energy, which are assumed to be 55J step-1. The predicted C versus gradient curve coincides with the curve obtained from metabolic measurements. We conclude that W+ext/W-ext partitioning and the eff+/eff- ratio, i.e. the different efficiency of the muscles during acceleration and braking, explain the metabolic optimum gradient for running of about -10%.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009608
Author(s):  
Ryan T. Schroeder ◽  
Arthur D. Kuo

The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic “Spring-mass” computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running.


2006 ◽  
Vol 22 (02) ◽  
pp. 66-71
Author(s):  
Yasuhisa Okumoto

This report focuses on welding work for the assembly of large steel structures as an example of physical jobs. Task simulations using a digital human model, including metabolic energy expenditure analysis, have been carried out using the biomechanical approach for typical welding postures. Moreover, necessary rest time to recover from fatigue has been studied, and the optimal work cycle in a day was examined. As a result, it can be concluded that the flat position for welding, the most widely applied posture, requires the greatest energy expenditure, whereas the overhead position is requires the least. Furthermore, it is concluded that the rule of taking short breaks and often is preferable from the viewpoint of recovery from fatigue, especially for work where the consumption of energy is large. Finally, an optimal work cycle is proposed.


2019 ◽  
Vol 184 (7-8) ◽  
pp. e281-e287
Author(s):  
Caitlin E Mahon ◽  
Benjamin J Darter ◽  
Christopher L Dearth ◽  
Brad D Hendershot

Abstract Introduction Temporal-spatial symmetry allows for optimal metabolic economy in unimpaired human gait. The gait of individuals with unilateral transfemoral amputation is characterized by temporal-spatial asymmetries and greater metabolic energy expenditure. The objective of this study was to determine whether temporal-spatial asymmetries account for greater metabolic energy expenditure in individuals with unilateral transfemoral amputation. Materials and Methods The relationship between temporal-spatial gait asymmetry and metabolic economy (metabolic power normalized by walking speed) was retrospectively examined in eighteen individuals with transfemoral amputation walking at a self-selected velocity overground. Pearson’s product-moment correlations were used to assess the relationship between: (1) step time symmetry and metabolic economy and (2) step length symmetry and metabolic economy. The retrospective analysis of this data was approved by the Walter Reed National Military Medical Center Institutional Review Board and all individuals provided written consent. Additional insights on this relationship are presented through a case series describing the temporal-spatial and metabolic responses of two individuals with transfemoral amputation who completed a split-belt treadmill walking test. Results For the cohort of individuals, there was no significant relationship between metabolic economy and either step time asymmetry or step length asymmetry. However, the case series showed a positive relationship between step length asymmetry and metabolic power as participants adapted to split-belt treadmill walking. Conclusion There is mixed evidence for the relationship between temporal-spatial asymmetries and metabolic energy expenditure. This preliminary study may suggest optimal metabolic energy expenditure in individuals with transfemoral amputation occurs at an individualized level of symmetry and resultant deviations incur a metabolic penalty. The results of this study support the idea that addressing only temporal-spatial gait asymmetries in individuals with transfemoral amputation through rehabilitation may not improve metabolic economy. Nevertheless, future prospective research is necessary to confirm these results and implications for clinical practice.


Sign in / Sign up

Export Citation Format

Share Document