A COMPUTATIONAL MODEL FOR ESTIMATING THE MECHANICS OF HORIZONTAL FLAPPING FLIGHT IN BATS

2001 ◽  
Vol 204 (16) ◽  
pp. 2873-2898 ◽  
Author(s):  
PHILIP WATTS ◽  
ERIKA J. MITCHELL ◽  
SHARON M. SWARTZ

SUMMARYWe combine three-dimensional descriptions of the movement patterns of the shoulder, elbow, carpus, third metacarpophalangeal joint and wingtip with a constant-circulation estimation of aerodynamic force to model the wing mechanics of the grey-headed flying fox (Pteropus poliocephalus) in level flight. Once rigorously validated, this computer model can be used to study diverse aspects of flight. In the model, we partitioned the wing into a series of chordwise segments and calculated the magnitude of segmental aerodynamic forces assuming an elliptical, spanwise distribution of circulation at the middle of the downstroke. The lift component of the aerodynamic force is typically an order of magnitude greater than the thrust component. The largest source of drag is induced drag, which is approximately an order of magnitude greater than body form and skin friction drag. Using this model and standard engineering beam theory, we calculate internal reaction forces, moments and stresses at the humeral and radial midshaft during flight. To assess the validity of our model, we compare the model-derived stresses with our previous in vivo empirical measurements of bone strain from P. poliocephalus in free flapping flight. Agreement between bone stresses from the simulation and those calculated from empirical strain measurements is excellent and suggests that the computer model captures a significant portion of the mechanics and aerodynamics of flight in this species.

2017 ◽  
Vol 30 (04) ◽  
pp. 1-8 ◽  
Author(s):  
Bronwen Childs ◽  
Brenna Pugliese ◽  
Cristina Carballo ◽  
Daniel Miranda ◽  
Elizabeth Brainerd ◽  
...  

SummaryX-ray reconstruction of moving morphology (XROMM) uses biplanar videoradiography and computed tomography (CT) scanning to capture three-dimensional (3D) bone motion. In XROMM, morphologically accurate 3D bone models derived from CT are animated with motion from videoradiography, yielding a highly accurate and precise reconstruction of skeletal kinematics. We employ this motion analysis technique to characterize metacarpophalangeal joint (MCPJ) motion in the absence and presence of protective legwear in a healthy pony. Our in vivo marker tracking precision was 0.09 mm for walk and trot, and 0.10 mm during jump down exercises. We report MCPJ maximum extension (walk: –27.70 ± 2.78° [standard deviation]; trot: –33.84 ± 4.94°), abduction/adduction (walk: 0.04 ± 0.24°; trot: –0.23 ± 0.35°) and external/internal rotations (walk: 0.30 ± 0.32°; trot: –0.49 ± 1.05°) indicating that the MCPJ in this pony is a stable hinge joint with negligible extra-sagittal rotations. No substantial change in MCPJ maximum extension angles or vertical ground reaction forces (GRFv) were observed upon application of legwear during jump down exercise. Neoprene boot application yielded –65.20 ± 2.06° extension (GRFv = 11.97 ± 0.67 N/kg) and fleece polo wrap application yielded –64.23 ± 1.68° extension (GRFv = 11.36 ± 1.66 N/kg), when compared to naked control (-66.11 ± 0.96°; GRFv = 12.02 ± 0.53 N/kg). Collectively, this proof of concept study illustrates the benefits and practical limitations of using XROMM to document equine MCPJ kinematics in the presence and absence of legwear.Supplementary Material to this article is available online at https://doi.org/10.3415/VCOT-16-06-0095.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vittorino Lanzio ◽  
Gregory Telian ◽  
Alexander Koshelev ◽  
Paolo Micheletti ◽  
Gianni Presti ◽  
...  

AbstractThe combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.


2009 ◽  
Author(s):  
Frederik C. Gerhardt ◽  
David Le Pelley ◽  
Richard G. J. Flay ◽  
Peter Richards

In recent years a number of Dynamic Velocity Prediction Programs (DVPPs), which allow studying the behaviour of a yacht while tacking, have been developed. The aerodynamic models used in DVPPs usually suffer from a lack of available data on the behaviour of the sail forces at very low apparent wind angles where the sails are flogging. In this paper measured aerodynamic force and moment coefficients for apparent wind angles between 0° and 30° are presented. Tests were carried out in the University of Auckland’s Twisted Flow Wind Tunnel in a quasi-steady manner for stepwise changes of the apparent wind angle. Test results for different tacking scenarios (genoa flogging or backed) are presented and discussed and it is found that a backed headsail does not necessarily produce more drag than a flogging headsail but increases the beneficial yawing moment significantly. The quasisteady approach used in the wind tunnel tests does not account for unsteady effects like the aerodynamic inertia in roll due to the “added mass” of the sails. In the second part of paper the added mass moment of inertia of a mainsail is estimated by “strip theory” and found to be significant. Using expressions from the literature the order of magnitude of three-dimensional effects neglected in strip theory is then assessed. To further quantify the added inertia experiments with a mainsail model were carried out. Results from those tests are presented at the end of the paper and indicate that the added inertia is about 76 % of what strip theory predicts.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Ilya R. Fischhoff ◽  
Adrian A. Castellanos ◽  
João P. G. L. M. Rodrigues ◽  
Arvind Varsani ◽  
Barbara A. Han

Back and forth transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals will establish wild reservoirs of virus that endanger long-term efforts to control COVID-19 in people and to protect vulnerable animal populations. Better targeting surveillance and laboratory experiments to validate zoonotic potential requires predicting high-risk host species. A major bottleneck to this effort is the few species with available sequences for angiotensin-converting enzyme 2 receptor, a key receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with three-dimensional modelling of host-virus protein–protein interactions using machine learning. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for greater than 5000 mammals—an order of magnitude more species than previously possible. Our predictions are strongly corroborated by in vivo studies. The predicted zoonotic capacity and proximity to humans suggest enhanced transmission risk from several common mammals, and priority areas of geographic overlap between these species and global COVID-19 hotspots. With molecular data available for only a small fraction of potential animal hosts, linking data across biological scales offers a conceptual advance that may expand our predictive modelling capacity for zoonotic viruses with similarly unknown host ranges.


2013 ◽  
Vol 13 (Supplement-1) ◽  
pp. 7-14
Author(s):  
S. Gavliakova ◽  
J. Plevkova ◽  
J. Jakus ◽  
I. Poliacek

Abstract Methods that had been applied to study central neuronal circuits regulating cough and respiratory reflexes so far rely on recording performed in vivo, ex vivo, micro injecting and lesion methods. Based on the available data it is clear that this network is complicated, multilevel, holarchical, undergoing reconfiguration under afferent inputs. For many students and researchers it is complicated to get a virtual spatial image of these cooperating neuronal populations. The project was aimed to create graphical three-dimensional computer model of the brainstem using environment MATLAB and the matrix algebra to visualize neuron localization within the brainstem. Relevant data for the model had been taken from recent and also former research papers published in particular areas. This model may help scientists to visualize groups of neurons, help them to find targets for microinjecting or lesion studies together with stereotaxic positioning. The model is upgradeable and highly flexible for future use, research and teaching applications in MATLAB environment. MATLAB is a high-level language and interactive environment that enables you to perform computationally intensive tasks faster than with traditional programming languages


Author(s):  
Shouqing Huang ◽  
Shuangfu Suo ◽  
Yongjian Li ◽  
Yuming Wang

Based on a type of three-dimensional slice model of a brush seal combined with the commercial CFD software FLUENT, the study calculated the leakage flow of the brush seal. The aerodynamic forces applied on upstream and downstream bristles are analyzed and reduced to a smaller amount of point forces for analysis convenience. The frictional coefficient between the bristle material Haynes 25 and rotor material 1Cr14Mn14Ni are tested. Tip forces including normal reaction and frictional forces caused by aerodynamic forces are quantitatively investigated under conditions with and without frictions using the torque balance principle and nonlinear beam theory (by ANSYS simulations), respectively. Torques, frictional heats, and the temperature distributions of the rotor and bristle pack are studied further. Details and characteristics of the flow and temperature distributions inside the bristle pack are presented. In the experiments, besides traditional tests, such as leakage and torque tests, an infrared camera is employed to capture temperature distributions at the interface of the rotor, bristle pack and nearby zones under various pressure differentials and rotation speeds. The three-dimensional slice model is firstly verified by calculating the leakages, torques and temperature distributions of the brush seal and confirmed via experimentation. The influence of various frictional coefficients and pressure differentials on tip forces, torque and temperature distributions are also examined.


2015 ◽  
Vol 768 ◽  
pp. 240-260 ◽  
Author(s):  
William Thielicke ◽  
Eize J. Stamhuis

The effect of airfoil design parameters, such as airfoil thickness and camber, are well understood in steady-state aerodynamics. But this knowledge cannot be readily applied to the flapping flight in insects and birds: flow visualizations and computational analyses of flapping flight have identified that in many cases, a leading-edge vortex (LEV) contributes substantially to the generation of aerodynamic force. In flapping flight, very high angles of attack and partly separated flow are common features. Therefore, it is expected that airfoil design parameters affect flapping wing aerodynamics differently. Existing studies have focused on force measurements, which do not provide sufficient insight into the dominant flow features. To analyse the influence of wing morphology in slow-speed bird flight, the time-resolved three-dimensional flow field around different flapping wing models in translational motion at a Reynolds number of $22\,000<\mathit{Re}<26\,000$ was studied. The effect of several Strouhal numbers ($0.2<\mathit{St}<0.4$), camber and thickness on the flow morphology and on the circulation was analysed. A strong LEV was found on all wing types at high $\mathit{St}$. The vortex is stronger on thin wings and enhances the total circulation. Airfoil camber decreases the strength of the LEV, but increases the total bound circulation at the same time, due to an increase of the ‘conventional’ bound circulation at the inner half of the wing. The results provide new insights into the influence of airfoil shape on the LEV and force generation at low $\mathit{Re}$. They contribute to a better understanding of the geometry of vertebrate wings, which seem to be optimized to benefit from LEVs in slow-speed flight.


Sign in / Sign up

Export Citation Format

Share Document