skeletal kinematics
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Giovanni Marco Scalera ◽  
Maurizio Ferrarin ◽  
Alberto Marzegan ◽  
Marco Rabuffetti

Soft tissue artefacts (STAs) undermine the validity of skin-mounted approaches to measure skeletal kinematics. Magneto-inertial measurement units (MIMU) gained popularity due to their low cost and ease of use. Although the reliability of different protocols for marker-based joint kinematics estimation has been widely reported, there are still no indications on where to place MIMU to minimize STA. This study aims to find the most stable positions for MIMU placement, among four positions on the thigh, four on the shank, and three on the foot. Stability was investigated by measuring MIMU movements against an anatomical reference frame, defined according to a standard marker-based approach. To this aim, markers were attached both on the case of each MIMU (technical frame) and on bony landmarks (anatomical frame). For each MIMU, the nine angles between each versor of the technical frame with each versor of the corresponding anatomical frame were computed. The maximum standard deviation of these angles was assumed as the instability index of MIMU-body coupling. Six healthy subjects were asked to perform barefoot gait, step negotiation, and sit-to-stand. Results showed that (1) in the thigh, the frontal position was the most stable in all tasks, especially in gait; (2) in the shank, the proximal position is the least stable, (3) lateral or medial calcaneus and foot dorsum positions showed equivalent stability performances. Further studies should be done before generalizing these conclusions to different motor tasks and MIMU-body fixation methods. The above results are of interest for both MIMU-based gait analysis and rehabilitation approaches using wearable sensors-based biofeedback.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Masato Kiyohara ◽  
Satoshi Hamai ◽  
Hirotaka Gondo ◽  
Hidehiko Higaki ◽  
Satoru Ikebe ◽  
...  

Abstract Background No studies have directly evaluated kinematic changes during squatting before and after bicruciate-stabilized total knee arthroplasty (BCS-TKA) with the dual cam-post mechanism and asymmetric surfaces. This study investigated the effect of BCS-TKA on changes to pre- and postoperative skeletal knee kinematics, to identify factors associated with postoperative skeletal kinematic parameters. Methods Seventeen knees in 17 patients were prospectively recruited before primary TKA for advanced medial knee osteoarthritis. Subjects underwent BCS-TKA and were evaluated more than 1 year postoperatively. In vivo dynamic skeletal knee kinematics were evaluated using periodic radiographic images collected during squatting to quantify the tibiofemoral functional extension/flexion angle, anteroposterior (AP) translation, and axial rotation angle using image-matching techniques. Rotational alignments of femoral and tibial components were measured postoperatively using computed tomography images. Results The pre- and postoperative tibiofemoral functional extension/flexion angles during squatting were 12.2° ± 6.7°/100.1° ± 16.8° and 9.6° ± 8.6°/109.4° ± 16.8°, respectively, with a significant difference in flexion angle (p < .05). Total AP translation was significantly larger postoperatively than preoperatively (10.8 mm ± 3.7 mm vs. 14.4 mm ± 4.2 mm, respectively; p < .05). The pre- and postoperative total rotation angles were 6.6° ± 3.0° and 6.4° ± 3.7°, respectively, indicating no significant difference. The pre- and postoperative tibiofemoral functional flexion angles were significantly associated with each other (p = .0434, r = .49). The postoperative total rotation angle was significantly smaller when the total component rotational mismatch angle between the femoral and tibial components was above 5° vs. below 5° (4.6° ± 2.7° vs. 8.3° ± 3.9°, respectively; p < .05). Conclusions BCS-TKA significantly increased the tibiofemoral functional flexion angles, with larger AP translation postoperatively. Both preoperative skeletal kinematics and surgical techniques affected the skeletal kinematics of the replaced knee. A total component rotational mismatch angle greater than 5° significantly decreased postoperative total knee rotation during squatting.


Author(s):  
Armita R Manafzadeh

Abstract X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow, but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.


2019 ◽  
Vol 95 ◽  
pp. 109287 ◽  
Author(s):  
Cong-Bo Phan ◽  
Geonhui Shin ◽  
Kyoung Min Lee ◽  
Seungbum Koo

2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Young-Jun Koo ◽  
Seungbum Koo

Accurate joint kinematics plays an important role in estimating joint kinetics in musculoskeletal simulations. Biplanar fluoroscopic (BPF) systems have been introduced to measure skeletal kinematics with six degrees-of-freedom. The purpose of this study was to model knee kinematic coupling using knee kinematics during walking, as measured by the BPF system. Seven healthy individuals (mean age, 23 ± 2 yr) performed treadmill walking trials at 1.2 m/s. Knee kinematics was regressed separately for the swing and stance phases using a generalized mixed effects model. Tibial anterior translation function was y=0.20x−3.09 for the swing phase and y=0.31x−0.54 for the stance phase, where x was the flexion angle and y was the tibial anterior translation. Tibial lateral and inferior translation were also regressed separately for the stance phase and the swing phase. Tibial external rotation was y=−0.002x2+0.19x−0.64 for the swing phase and y=−0.19x−1.22 for the stance phase. The tibial adduction rotation function was also calculated separately for the stance and swing phase. The study presented three-dimensional coupled motion in the knee during the stance and swing phases of walking, and demonstrated the lateral pivoting motion found in previous studies. This expanded understanding of secondary knee motion functions will benefit musculoskeletal simulation and help improve the accuracy of calculated kinetics.


2019 ◽  
Vol 222 (5) ◽  
pp. jeb193573 ◽  
Author(s):  
Bradley Scott ◽  
Cheryl A. D. Wilga ◽  
Elizabeth L. Brainerd

2019 ◽  
Vol 43 (3) ◽  
pp. 331-338 ◽  
Author(s):  
Megan Balsdon ◽  
Colin Dombroski ◽  
Kristen Bushey ◽  
Thomas R Jenkyn

Background: Foot orthoses have proven to be effective for conservative management of various pathologies. Pathologies of the lower limb can be caused by abnormal biomechanics such as irregular foot structure and alignment, leading to inadequate support. Objectives: To compare biomechanical effects of different foot orthoses on the medial longitudinal arch during dynamic gait using skeletal kinematics. Study design: This study follows a prospective, cross-sectional study design. Methods: The medial longitudinal arch angle was measured for 12 participants among three groups: pes planus, pes cavus and normal arch. Five conditions were compared: three orthotic devices (hard custom foot orthosis, soft custom foot orthosis and off-the-shelf Barefoot Science©), barefoot and shod. An innovative method, markerless fluoroscopic radiostereometric analysis, was used to measure the medial longitudinal arch angle. Results: Mean medial longitudinal arch angles for both custom foot orthosis conditions were significantly different from the barefoot and shod conditions ( p < 0.05). There was no significant difference between the off-the-shelf device and the barefoot or shod conditions ( p > 0.05). In addition, the differences between hard and soft custom foot orthoses were not statistically significant. All foot types showed a medial longitudinal arch angle decrease with both the hard and soft custom foot orthoses. Conclusion: These results suggest that custom foot orthoses can reduce motion of the medial longitudinal arch for a range of foot types during dynamic gait. Level of evidence: Therapeutic study, Level 2. Clinical relevance Custom foot orthoses support and alter the position of the foot during weightbearing. The goal is to eliminate compensation of the foot for a structural deformity or malalignment and redistribute abnormal plantar pressures. By optimizing the position of the foot, the medial longitudinal arch (MLA) will also change and quantifying this change is of interest to clinicians.


2018 ◽  
Vol 51 ◽  
pp. 41-48 ◽  
Author(s):  
Liying Zheng ◽  
Robert Carey ◽  
Eric Thorhauer ◽  
Scott Tashman ◽  
Christopher Harner ◽  
...  

2017 ◽  
Vol 30 (04) ◽  
pp. 1-8 ◽  
Author(s):  
Bronwen Childs ◽  
Brenna Pugliese ◽  
Cristina Carballo ◽  
Daniel Miranda ◽  
Elizabeth Brainerd ◽  
...  

SummaryX-ray reconstruction of moving morphology (XROMM) uses biplanar videoradiography and computed tomography (CT) scanning to capture three-dimensional (3D) bone motion. In XROMM, morphologically accurate 3D bone models derived from CT are animated with motion from videoradiography, yielding a highly accurate and precise reconstruction of skeletal kinematics. We employ this motion analysis technique to characterize metacarpophalangeal joint (MCPJ) motion in the absence and presence of protective legwear in a healthy pony. Our in vivo marker tracking precision was 0.09 mm for walk and trot, and 0.10 mm during jump down exercises. We report MCPJ maximum extension (walk: –27.70 ± 2.78° [standard deviation]; trot: –33.84 ± 4.94°), abduction/adduction (walk: 0.04 ± 0.24°; trot: –0.23 ± 0.35°) and external/internal rotations (walk: 0.30 ± 0.32°; trot: –0.49 ± 1.05°) indicating that the MCPJ in this pony is a stable hinge joint with negligible extra-sagittal rotations. No substantial change in MCPJ maximum extension angles or vertical ground reaction forces (GRFv) were observed upon application of legwear during jump down exercise. Neoprene boot application yielded –65.20 ± 2.06° extension (GRFv = 11.97 ± 0.67 N/kg) and fleece polo wrap application yielded –64.23 ± 1.68° extension (GRFv = 11.36 ± 1.66 N/kg), when compared to naked control (-66.11 ± 0.96°; GRFv = 12.02 ± 0.53 N/kg). Collectively, this proof of concept study illustrates the benefits and practical limitations of using XROMM to document equine MCPJ kinematics in the presence and absence of legwear.Supplementary Material to this article is available online at https://doi.org/10.3415/VCOT-16-06-0095.


Sign in / Sign up

Export Citation Format

Share Document