Three-dimensional kinematics of the equine metacarpophalangeal joint using x-ray reconstruction of moving morphology – a pilot study

2017 ◽  
Vol 30 (04) ◽  
pp. 1-8 ◽  
Author(s):  
Bronwen Childs ◽  
Brenna Pugliese ◽  
Cristina Carballo ◽  
Daniel Miranda ◽  
Elizabeth Brainerd ◽  
...  

SummaryX-ray reconstruction of moving morphology (XROMM) uses biplanar videoradiography and computed tomography (CT) scanning to capture three-dimensional (3D) bone motion. In XROMM, morphologically accurate 3D bone models derived from CT are animated with motion from videoradiography, yielding a highly accurate and precise reconstruction of skeletal kinematics. We employ this motion analysis technique to characterize metacarpophalangeal joint (MCPJ) motion in the absence and presence of protective legwear in a healthy pony. Our in vivo marker tracking precision was 0.09 mm for walk and trot, and 0.10 mm during jump down exercises. We report MCPJ maximum extension (walk: –27.70 ± 2.78° [standard deviation]; trot: –33.84 ± 4.94°), abduction/adduction (walk: 0.04 ± 0.24°; trot: –0.23 ± 0.35°) and external/internal rotations (walk: 0.30 ± 0.32°; trot: –0.49 ± 1.05°) indicating that the MCPJ in this pony is a stable hinge joint with negligible extra-sagittal rotations. No substantial change in MCPJ maximum extension angles or vertical ground reaction forces (GRFv) were observed upon application of legwear during jump down exercise. Neoprene boot application yielded –65.20 ± 2.06° extension (GRFv = 11.97 ± 0.67 N/kg) and fleece polo wrap application yielded –64.23 ± 1.68° extension (GRFv = 11.36 ± 1.66 N/kg), when compared to naked control (-66.11 ± 0.96°; GRFv = 12.02 ± 0.53 N/kg). Collectively, this proof of concept study illustrates the benefits and practical limitations of using XROMM to document equine MCPJ kinematics in the presence and absence of legwear.Supplementary Material to this article is available online at https://doi.org/10.3415/VCOT-16-06-0095.

2001 ◽  
Vol 204 (16) ◽  
pp. 2873-2898 ◽  
Author(s):  
PHILIP WATTS ◽  
ERIKA J. MITCHELL ◽  
SHARON M. SWARTZ

SUMMARYWe combine three-dimensional descriptions of the movement patterns of the shoulder, elbow, carpus, third metacarpophalangeal joint and wingtip with a constant-circulation estimation of aerodynamic force to model the wing mechanics of the grey-headed flying fox (Pteropus poliocephalus) in level flight. Once rigorously validated, this computer model can be used to study diverse aspects of flight. In the model, we partitioned the wing into a series of chordwise segments and calculated the magnitude of segmental aerodynamic forces assuming an elliptical, spanwise distribution of circulation at the middle of the downstroke. The lift component of the aerodynamic force is typically an order of magnitude greater than the thrust component. The largest source of drag is induced drag, which is approximately an order of magnitude greater than body form and skin friction drag. Using this model and standard engineering beam theory, we calculate internal reaction forces, moments and stresses at the humeral and radial midshaft during flight. To assess the validity of our model, we compare the model-derived stresses with our previous in vivo empirical measurements of bone strain from P. poliocephalus in free flapping flight. Agreement between bone stresses from the simulation and those calculated from empirical strain measurements is excellent and suggests that the computer model captures a significant portion of the mechanics and aerodynamics of flight in this species.


Author(s):  
D C Ackland ◽  
F Keynejad ◽  
M G Pandy

Knowledge of three-dimensional skeletal kinematics during functional activities such as walking, is required for accurate modelling of joint motion and loading, and is important in identifying the effects of injury and disease. For example, accurate measurement of joint kinematics is essential in understanding the pathogenesis of osteoarthritis and its symptoms and for developing strategies to alleviate joint pain. Bi-plane X-ray fluoroscopy has the capacity to accurately and non-invasively measure human joint motion in vivo. Joint kinematics obtained using bi-plane X-ray fluoroscopy will aid in the development of more complex musculoskeletal models, which may be used to assess joint function and disease and plan surgical interventions and post-operative rehabilitation strategies. At present, however, commercial C-arm systems constrain the motion of the subject within the imaging field of view, thus precluding recording of motions such as overground gait. These fluoroscopy systems also operate at low frame rates and therefore cannot accurately capture high-speed joint motion during tasks such as running and throwing. In the future, bi-plane fluoroscopy systems may include computer-controlled tracking for the measurement of joint kinematics over entire cycles of overground gait without constraining motion of the subject. High-speed cameras will facilitate measurement of high-impulse joint motions, and computationally efficient pose-estimation software may provide a fast and fully automated process for quantification of natural joint motion.


2021 ◽  
Author(s):  
Anna-Maria Eckel ◽  
Rebecca Liyanage ◽  
Takeshi Kurotori ◽  
Ronny Pini

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yun Lei

Unconventional rocks such as tight sandstone and shale usually develop multiscale complex pore structures, with dimensions ranging from nanometers to millimeters, and the full range can be difficult to characterize for natural samples. In this paper, we developed a new hybrid digital rock construction approach to mimic the pore space of tight sandstone by combining X-ray CT scanning and multiple-point geostatistics algorithm (MPGA). First, a three-dimensional macropore digital rock describing the macroscopic pore structure of tight sandstone was constructed by micro-CT scanning. Then, high-resolution scanning electron microscopy (SEM) was performed on the tight sandstone sample, and the three-dimensional micropore digital rock was reconstructed by MPGA. Finally, the macropore digital rock and the micropore digital rock were superimposed into the full-pore digital rock. In addition, the nuclear magnetic resonance (NMR) response of digital rocks is simulated using a random walk method, and seepage simulation was performed by the lattice Boltzmann method (LBM). The results show that the full-pore digital rock has the same anisotropy and good connectivity as the actual rock. The porosity, NMR response, and permeability are in good agreement with the experimental values.


2007 ◽  
Vol 330-332 ◽  
pp. 503-506
Author(s):  
Xiao Wei Fu ◽  
Jie Huang ◽  
E.S. Thian ◽  
Serena Best ◽  
William Bonfield

A Bioglass® reinforced polyethylene (Bioglass®/polyethylene) composite has been prepared, which combines the high bioactivity of Bioglass® and the toughness of polyethylene. The spatial distribution of Bioglass® particles within the composite is important for the performance of composites in-vivo. Recent developments in X-ray microtomography (XμT) have made it possible to visualize internal and microstructural details with different X-ray absorbencies, nondestructively, and to acquire 3D information at high spatial resolution. In this study, the volume fraction and 3D spatial distribution of Bioglass® particles has been acquired quantitatively by XμT. The information obtained provides a foundation for understanding the mechanical and bioactive properties of the Bioglass®/polyethylene composites.


2020 ◽  
Vol 47 (10) ◽  
pp. 4721-4734
Author(s):  
Omri Ziv ◽  
S. Nahum Goldberg ◽  
Yitzhak Nissenbaum ◽  
Jacob Sosna ◽  
Noam Weiss ◽  
...  

Author(s):  
Armita R Manafzadeh

Abstract X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow, but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.


Sign in / Sign up

Export Citation Format

Share Document