scholarly journals Neural processing of linearly and circularly polarized light signal in a mantis shrimp Haptosquilla pulchella

2020 ◽  
Vol 223 (22) ◽  
pp. jeb219832
Author(s):  
Tsyr-Huei Chiou ◽  
Ching-Wen Wang

ABSTRACTStomatopods, or mantis shrimp, are the only animal group known to possess circular polarization vision along with linear polarization vision. By using the rhabdomere of a distally located photoreceptor as a wave retarder, the eyes of mantis shrimp are able to convert circularly polarized light into linearly polarized light. As a result, their circular polarization vision is based on the linearly polarized light-sensitive photoreceptors commonly found in many arthropods. To investigate how linearly and circularly polarized light signals might be processed, we presented a dynamic polarized light stimulus while recording from photoreceptors or lamina neurons in intact mantis shrimp Haptosquilla pulchella. The results indicate that all the circularly polarized light-sensitive photoreceptors also showed differential responses to the changing e-vector angle of linearly polarized light. When stimulated with linearly polarized light of varying e-vector angle, most photoreceptors produced a concordant sinusoidal response. In contrast, some lamina neurons doubled the response frequency in reacting to linearly polarized light. These responses resembled a rectified sum of two-channel linear polarization-sensitive photoreceptors, indicating that polarization visual signals are processed at or before the first optic lobe. Noticeably, within the lamina, there was one type of neuron that showed a steady depolarization response to all stimuli except right-handed circularly polarized light. Together, our findings suggest that, between the photoreceptors and lamina neurons, linearly and circularly polarized light may be processed in parallel and differently from one another.

1989 ◽  
Vol 28 (Part 1, No. 8) ◽  
pp. 1332-1336 ◽  
Author(s):  
Hiromichi Horinaka ◽  
Hiroshi Inada ◽  
Takashi Saijyo

1973 ◽  
Vol 52 ◽  
pp. 161-167 ◽  
Author(s):  
P. G. Martin

This paper shows that optical observations of circular polarization produced by aligned interstellar grains could yield valuable information about the grain material. The interstellar medium is known to be linearly dichroic from observations of interstellar linear polarization; many different grain models using a large variety of compositions can be found to reproduce these observations. Since the same aligned grains make the medium linearly birefringent, a small component of circular polarization can result from incident linearly polarized light if the position angle of the linear polarization does not coincide with either principal axis of the medium. Here calculations are presented to demonstrate that the wavelength of the circular polarization is sensitive to the imaginary part of the complex refractive index of the grain material. This provides an opportunity of investigating whether the grains are characteristically dielectric or metallic. Some possible observations are suggested.


2011 ◽  
Vol 366 (1565) ◽  
pp. 619-626 ◽  
Author(s):  
Thomas W. Cronin ◽  
Justin Marshall

Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication.


2003 ◽  
Vol 12 (04) ◽  
pp. 495-511 ◽  
Author(s):  
L. M. BLINOV ◽  
R. BARBERI ◽  
F. CIUCHI ◽  
M. P. DE SANTO ◽  
G. CIPPARRONE ◽  
...  

A comparative study of photo-induced optical anisotropy was carried out on Langmuir–Blodgett films prepared from five different amphiphilic azobenzene derivatives. The anisotropy was induced by a linearly polarized pump beam of an Ar-ion laser at λ=514 nm and monitored by a linearly polarized probe beam of a He–Ne laser at λ=633 nm . Large optical anisotropy up to 0.35 has been induced. Holographic gratings were recorded by two left circularly polarized beams of the Ar-ion laser and time evolution of the first-order diffraction efficiency of the probe beam was recorded in an automatic regime. In such a geometry, the spatial modulation of refraction index reaches 0.14. The experimental data is consistent with a model for a photo-induced collective chromophore realignment in the heterogeneous domain structure of the films studied. The influence of an electric field of the corona discharge on the grating recording process was also studied and polar diffraction gratings have been prepared by a spatially periodic photo-poling process.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongkang Song ◽  
Weici Liu ◽  
Xiaolei Wang ◽  
Faqiang Wang ◽  
Zhongchao Wei ◽  
...  

Metasurfaces have powerful light field manipulation capabilities, which have been extensively studied in the past few years and have developed rapidly in various fields. At present, the focus of metasurface research has shifted to the tunable functionality. In this paper, a temperature-controllable multifunctional metasurface lens based on phase transition material is designed. First of all, by controlling the temperature of the desired working area and the polarization of the incident light, switching among multiple focus, single focus, and no focus at any position can be achieved, and the intensity and helicity of the output light can be adjusted. In addition, a polarization-sensitive intensity-tunable metalens based on the P-B phase principle is designed, when the incident light is linearly polarized light, left-handed circularly polarized light, or right-handed circularly polarized light, it has the same focal point but with different light field intensities. Therefore, the focused intensity can be tunable by the polarization state of the incident light.


2021 ◽  
Author(s):  
Peristera Paschou ◽  
Nikolaos Siomos ◽  
Vassilis Amiridis ◽  
Volker Freudenthaler ◽  
George Georgoussis ◽  
...  

<p>The EVE (Enhancement and Validation of ESA products) lidar is a mobile, ground-based, polarization lidar system, developed to provide ground reference measurements for the validation of the Aeolus L2A products. The system utilizes a dual-laser/dual-telescope configuration that emits linearly and circularly polarized light at 355 nm  interleaved and detects the linear and circular depolarization on the backscattered signals as well as the Raman backscattering at 387 nm. Consequently, the particle optical properties of backscatter coefficient, extinction coefficient, linear and circular depolarization ratios can be measured by the lidar. Moreover, the system’s dual configuration enables to mimic both the operation of ALADIN on board Aeolus that relies on the circularly polarized emission and the operation of a polarization lidar system with linearly polarized emission. Besides EVE’s main goal of the Aeolus L2A products performance evaluation under a wide variety of aerosol types, EVE can also validate the linear to circular depolarization conversions, which have to be used for the harmonization of the linearly polarized lidar systems with Aeolus, and as such, to evaluate any possible biases of the efforts of these systems on Aeolus L2A validation.</p>


2016 ◽  
Vol 2 (2) ◽  
pp. e1501333 ◽  
Author(s):  
Cong Chen ◽  
Zhensheng Tao ◽  
Carlos Hernández-García ◽  
Piotr Matyba ◽  
Adra Carr ◽  
...  

Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.


2008 ◽  
Vol 4 (S251) ◽  
pp. 311-312 ◽  
Author(s):  
V. Rosenbush ◽  
N. Kiselev ◽  
L. Kolokolova

AbstractPolarimetric observations demonstrated that all comets with significant values of circular polarization show predominantly left–handed circularly polarized light. We discuss the presence of homochiral organics in cometary materials as a source of the observed circular polarization. We have studied the effect of chirality on light–scattering properties of cometary dust considering particles that possess optical activity. Our investigations show that the cometary dust may include optically active materials which can be prebiological homochiral organics.


Author(s):  
Basil T. Wong ◽  
Rodolphe Vaillon ◽  
M. Pinar Mengu¨c¸

In this paper, the potential use of polarized light for characterization of mono-dispersed air bubbles coated with carbonaceous particles is investigated using a vector Monte Carlo approach. The medium is assumed to be water, loaded with highly-forward scattering ash and coal particles, as well as absorbing and scattering air bubbles coated with a thin carbonaceous (soot) layer. A polarized laser beam is assumed to impinge normally on a cylindrical system at the circumferential surface, and the scattered signals are assumed to be collected within the same plane. The scattering matrix for the entire medium is constructed based on the Fresnel equations. Examination of the absorbing and multiple-scattering results show that if circularly polarized light is used, the bubble size, the bubble separation, as well as the thickness of carbonaceous layer around bubbles can be determined if careful experiments are conducted. It is shown that circularly polarized light is a better choice than the linearly polarized incident radiation for the present diagnosis objectives.


2018 ◽  
Vol 39 (1) ◽  
pp. 140-144
Author(s):  
Lyu Qinghua ◽  
Wang Yutao ◽  
Hu Yongtao ◽  
Zhai Zhongsheng ◽  
Chen Lie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document