Preliminary investigations about the separation of automotive composite components by a hydro-erosive method

Author(s):  
M Weiss ◽  
A W Momber

A new method for separating fibrous coatings and backing materials of automotive components is introduced. The selective performance of high-speed water jets with velocities up to 300 m/s is utilized to mill backing materials from textile card webs without fibre damage, and selectively to remove textile coatings from luggage boot linings, insulating sheets and columns. The individual separation processes are discussed. The particular material removal process depends on the structure and properties of the compounds. Permeability plays an important role. It is shown that any individual separation process is characterized by an energy threshold, and typical values for these thresholds are provided. The new method is a very reliable tool for selective separation. Quality aspects as well as economical aspects are also discussed.

2019 ◽  
Vol 126 ◽  
pp. 00069
Author(s):  
E.V. Alekseev

The use of flotation methods for wastewater treatment is due to their advantages in comparison with other methods of gravity separation, for example, sedimentation. The advantages of flotation water treatment methods include the high speed of the separation process, the ability to extract impurities that are close in density to water, environmental friendliness. Flotation methods are based on adsorptive bubble separation processes. Accordingly, the performance of a particular flotator directly depends on the conditions for the implementation of these processes in a particular flotation cell. The aim of the research was to study the relationship between the dispersed gas phase (DGP) and the ratio of the geometric dimensions of the flotation cells based on the proposed shape indicator of the flotation cell. Studies performed on the experimental model of the flotator have established a significant influence of theshape indicator of the flotation cell on such important indicators of the adsorptive bubble separation processes as gas-filling and the DGP floating speed. The evaluation of different forms of flotation cells, in relation to the properties of extracted bubble-particle complexes is given.


1984 ◽  
Vol 12 (1) ◽  
pp. 44-63 ◽  
Author(s):  
Y. D. Kwon ◽  
D. C. Prevorsek

Abstract Radial tires for automobiles were subjected to high speed rolling under load on a testing wheel to determine the critical speeds at which standing waves started to form. Tires of different makes had significantly different critical speeds. The damping coefficient and mass per unit length of the tire wall were measured and a correlation between these properties and the observed critical speed of standing wave formation was sought through use of a circular membrane model. As expected from the model, desirably high critical speed calls for a high damping coefficient and a low mass per unit length of the tire wall. The damping coefficient is particularly important. Surprisingly, those tire walls that were reinforced with steel cord had higher damping coefficients than did those reinforced with polymeric cord. Although the individual steel filaments are elastic, the interfilament friction is higher in the steel cords than in the polymeric cords. A steel-reinforced tire wall also has a higher density per unit length. The damping coefficient is directly related to the mechanical loss in cyclic deformation and, hence, to the rolling resistance of a tire. The study shows that, in principle, it is more difficult to design a tire that is both fuel-efficient and free from standing waves when steel cord is used than when polymeric cords are used.


Author(s):  
Zhanfeng Zhao ◽  
Dong Zhang ◽  
Zhiquan Zhou
Keyword(s):  

2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


2021 ◽  
Vol 11 (13) ◽  
pp. 5787
Author(s):  
Toan-Thang Vu ◽  
Thanh-Tung Vu ◽  
Van-Doanh Tran ◽  
Thanh-Dong Nguyen ◽  
Ngoc-Tam Bui

The measurement speed and measurement accuracy of a displacement measuring interferometer are key parameters. To verify these parameters, a fast and high-accuracy motion is required. However, the displacement induced by a mechanical actuator generates disadvantageous features, such as slow motion, hysteresis, distortion, and vibration. This paper proposes a new method for a nonmechanical high-speed motion using an electro-optic modulator (EOM). The method is based on the principle that all displacement measuring interferometers measure the phase change to calculate the displacement. This means that the EOM can be used to accurately generate phase change rather than a mechanical actuator. The proposed method is then validated by placing the EOM into an arm of a frequency modulation interferometer. By using two lock-in amplifiers, the phase change in an EOM and, hence, the corresponding virtual displacement could be measured by the interferometer. The measurement showed that the system could achieve a displacement at 20 kHz, a speed of 6.08 mm/s, and a displacement noise level < 100 pm//√Hz above 2 kHz. The proposed virtual displacement can be applied to determine both the measurement speed and accuracy of displacement measuring interferometers, such as homodyne interferometers, heterodyne interferometers, and frequency modulated interferometers.


2020 ◽  
Vol 11 (1) ◽  
pp. 241
Author(s):  
Juliane Kuhl ◽  
Andreas Ding ◽  
Ngoc Tuan Ngo ◽  
Andres Braschkat ◽  
Jens Fiehler ◽  
...  

Personalized medical devices adapted to the anatomy of the individual promise greater treatment success for patients, thus increasing the individual value of the product. In order to cater to individual adaptations, however, medical device companies need to be able to handle a wide range of internal processes and components. These are here referred to collectively as the personalization workload. Consequently, support is required in order to evaluate how best to target product personalization. Since the approaches presented in the literature are not able to sufficiently meet this demand, this paper introduces a new method that can be used to define an appropriate variety level for a product family taking into account standardized, variant, and personalized attributes. The new method enables the identification and evaluation of personalizable attributes within an existing product family. The method is based on established steps and tools from the field of variant-oriented product design, and is applied using a flow diverter—an implant for the treatment of aneurysm diseases—as an example product. The personalization relevance and adaptation workload for the product characteristics that constitute the differentiating product properties were analyzed and compared in order to determine a tradeoff between customer value and personalization workload. This will consequently help companies to employ targeted, deliberate personalization when designing their product families by enabling them to factor variety-induced complexity and customer value into their thinking at an early stage, thus allowing them to critically evaluate a personalization project.


2014 ◽  
Vol 941-944 ◽  
pp. 2219-2223 ◽  
Author(s):  
Guo Juan Zhao ◽  
Lei Zhang ◽  
Shi Jun Ji ◽  
Xin Wang

In this paper, a new method is presented for the identification of machine tool component errors. Firstly, the Non-Uniform Rational B-spline (NURBS) is established to represent the geometric component errors. The individual geometric errors of the motion parts are measured by laser interferometer. Then, the volumetric error for a machine tool with three motion parts is modeled based on the screw theory. Finally, the simulations and experiments are conducted to confirm the validity of the proposed method.


2005 ◽  
Vol 6-8 ◽  
pp. 805-808
Author(s):  
F. Sekine

The blanking of thin sheet metals using progressive dies is an important process on production of precision electronic machine parts. As a model of IC leadframe, an I-shaped and an Lshaped models were blanked and influences of blanking conditions on dimensional accuracy of blanked lead were examined. Furthermore, a mechanical model is proposed to explain the affect of the blanking conditions on product accuracy. In these days, more fine leads are required as electronic machines become more precise and accurate. It must be treated that leads are firmly held for blanking leadframes accurately. In this paper, an effective method of stripper holding leads strongly are discussed and a new method using newly designed stripper is proposed. Consequently the effect of it on lead accuracy is proved.


Sign in / Sign up

Export Citation Format

Share Document