Stability Analysis of a Load-Sensing Hydraulic System

Author(s):  
S D Kim ◽  
H S Cho ◽  
C O Lee

The load-sensing hydraulic system is an energy saving hydraulic system which improves the efficiency of transmitting power from the pump to the load. However, its stability characteristics deteriorate critically due to the addition of the load-sensing mechanism, compared with those of the conventional system. In this paper, a non-linear mathematical model of the load-sensing hydraulic system is formulated, taking into consideration the dynamics of the load-sensing pump. Based upon linearization of this model for various operating conditions, the stability analysis has been made using the Routh-Hurwitz stability criterion. The results of the theoretical stability analysis were assured through experiments. Both results show that stability is critical to the choice of system parameters such as the setting pressure of the pump compensator and the load inertia.

Author(s):  
Rana Saha ◽  
Niloy Khutia ◽  
Rathindranath Maiti

Abstract An energy saving hydraulic system, known as load-sensing hydraulic system, to improve the efficiency of transmitting power from the pump to load has been studied in the present work. Due to the addition of the load sensing mechanism stability characteristics deteriorate in this system. A nonlinear mathematical model followed by a simulation model using SIMULINK has been developed to study the effect of system parameters on stability. Simulation results are verified with existing theoretical and experimental results.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


2001 ◽  
Author(s):  
Davide Valtorta ◽  
Khaled E. Zaazaa ◽  
Ahmed A. Shabana ◽  
Jalil R. Sany

Abstract The lateral stability of railroad vehicles travelling on tangent tracks is one of the important problems that has been the subject of extensive research since the nineteenth century. Early detailed studies of this problem in the twentieth century are the work of Carter and Rocard on the stability of locomotives. The linear theory for the lateral stability analysis has been extensively used in the past and can give good results under certain operating conditions. In this paper, the results obtained using a linear stability analysis are compared with the results obtained using a general nonlinear multibody methodology. In the linear stability analysis, the sources of the instability are investigated using Liapunov’s linear theory and the eigenvalue analysis for a simple wheelset model on a tangent track. The effects of the stiffness of the primary and secondary suspensions on the stability results are investigated. The results obtained for the simple model using the linear approach are compared with the results obtained using a new nonlinear multibody based constrained wheel/rail contact formulation. This comparative numerical study can be used to validate the use of the constrained wheel/rail contact formulation in the study of lateral stability. Similar studies can be used in the future to define the limitations of the linear theory under general operating conditions.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881066 ◽  
Author(s):  
Wei Wei ◽  
Hongchao Jian ◽  
Qingdong Yan ◽  
Xiaomei Luo ◽  
Xuhong Wu

A nonlinear dynamic model is developed to analyze the stability of a pilot-operated valve-control hydraulic system. The dynamic model includes motion of the valve spool and fluid dynamics in the system. Characteristics such as pressure flow across the valve port and orifices, pressure, and flow rate in valve chambers are taken into consideration. Bifurcation analysis is proposed and examined by numerical simulation results when the feedback orifice diameter changes. The effects of different system parameters such as pilot-operating pressure, spring stiffness, and overlap of inlet port on the stability border of the system are studied by two-dimensional bifurcation analyses. The study identifies that bifurcation can occur in the system and lead to sustained self-excited vibration with parameters in certain region of the parameter space. It suggests that the vibration can be effectively predicted and prevented by selecting system parameters from the asymptotic stable parameter region.


Author(s):  
K. Ramakrishnan ◽  
G. Ray

In this paper, we consider the problem of delay-dependent stability of a class of Lur’e systems of neutral type with time-varying delays and sector-bounded nonlinearity using Lyapunov–Krasovskii (LK) functional approach. By using a candidate LK functional in the stability analysis, a less conservative absolute stability criterion is derived in terms of linear matrix inequalities (LMIs). In addition to the LK functional, conservatism in the proposed stability analysis is further reduced by imposing tighter bounding on the time-derivative of the functional without neglecting any useful terms using minimal number of slack matrix variables. The proposed analysis, subsequently, yields a stability criterion in convex LMI framework, and is solved nonconservatively at boundary conditions using standard LMI solvers. The effectiveness of the proposed criterion is demonstrated through a standard numerical example and Chua’s circuit.


Author(s):  
Hu Quanyi ◽  
Zhang Hong ◽  
Tian Shujun ◽  
Qin Xuxin

The traditional load-sensing hydraulic system is an energy-saving fluid power transmission, which supply “on-demand” flow at a prescribed pressure margin greater than the highest load pressure of the system. In this paper, a novel load-sensing system that has a variable pressure margin through overriding differential pressure control via integrating an electro-proportional three-way type pressure reducing valve into the hydro-mechanical load-sensing valve is proposed. Also, a bond graph model taking into account the dynamic characteristics of load-sensing valve and load-sensing path is constructed, and three group experiments are performed to verify the validation of the model. Based on the bond graph model, a series of theoretical simulations are carried out to prove that the proposed Load-Sensing system enables a satisfactory balance between energy efficiency and rapid dynamic response over a wide range of operating conditions. In addition, due to overriding differential pressure control, mode selection and power limit regulation can also be achieved.


Author(s):  
Lorand Gabriel Parajdi ◽  
Radu Precup ◽  
Eduard Alexandru Bonci ◽  
Ciprian Tomuleasa

A mathematical model given by a two - dimensional differential system is introduced in order to understand the transition process from the normal hematopoiesis to the chronic and accelerated acute stages in chronic myeloid leukemia. A previous model of Dingli and Michor is refined by introducing a new parameter in order to differentiate the bone marrow microenvironment sensitivities of normal and mutant stem cells. In the light of the new parameter, the system now has three distinct equilibria corresponding to the normal hematopoietic state, to the chronic state, and to the accelerated acute phase of the disease. A characterization of the three hematopoietic states is obtained based on the stability analysis. Numerical simulations are included to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document