Intersection Operation on a Complex Plane
Two plane algebraic curves intersect at the actual intersection points of these curves’ graphs. In addition to real intersection points, algebraic curves can also have imaginary intersection points. The total number of curves intersection points is equal to the product of their orders mn. The number of imaginary intersection points can be equal to or part of mn. The position of the actual intersection points is determined by the graphs of the curves, but the imaginary intersection points do not lie on the graphs of these curves, and their position on the plane remains unclear. This work aims to determine the geometry of imaginary intersection points, introduces into consideration the concept of imaginary complement for these algebraic curves in the intersection operation, determines the form of imaginary complements, which intersect at imaginary points. The visualization of imaginary complements clarifies the curves intersection picture, and the position of the imaginary intersection points becomes expected.