scholarly journals Ethanolysis of Waste Cooking oils using KOH Catalyst

2021 ◽  
Vol 37 (6) ◽  
pp. 1344-1349
Author(s):  
Aboulbaba Eladeb ◽  
Abdelkarim Aydi ◽  
Ibrahim Alenezi

The transesterification of waste cooking oils (WCO) with ethanol was investigated by means of potassium hydroxide (KOH) as catalyst. This work aimed to study the influences of catalyst concentration, temperature, ethanol to WCO molar ratio, reaction time, and stirring rate on the biodiesel conversion. Gas chromatography (GC) was used during the process of transesterification to determine the evolution of ethyl esters concentration with time. Biodiesel with maximum yield was obtained (92.5%) when 2 wt% KOH, temperature of 75°C, and ethanol/oil molar ratio of 11:1 were utilized.

2014 ◽  
Vol 695 ◽  
pp. 289-292
Author(s):  
M.M. Zamberi ◽  
Farid Nasir Ani ◽  
S.N.H. Hassan

The transesterification of waste vegetable oil (WVO) with methanol in the presence of potassium hydroxide (KOH) is studied in order to produce biodiesel. All the results were evaluated using central composite design by applying a double 5 level 3 factor full factorial designs. Twenty experiments were replicated under the typical range of parameter conditions coded as x1 for oil molar ratio, x2 as catalyst concentration and x3 for reaction time. The experimental fatty acid methyl ester (FAME) are compared with the predicted FAME using RSM. The optimal predicted FAME production was obtained at 92.60%. It is specified under conditions of molar ratio 4:1 mol/mol, 0.5033 wt% catalyst concentration and reaction time of 60 minutes.


2014 ◽  
Vol 554 ◽  
pp. 500-504 ◽  
Author(s):  
Farid Nasir Ani ◽  
Ahmed Bakheit Elhameed

This paper investigated the three critical reaction parameters including catalyst concentration, microwave exit power and reaction time for the transesterification process of jatropha curcas oil using microwave irradiation. The work is an attempt to reduce the production cost of biodiesel. Similar quantities of methanol to oil molar ratio 6:1 and calcium oxide as a heterogeneous catalyst were used. The results showed that the best yield percentage 96% was obtained using 300W microwave exit power, 8 %wt CaO and 7 min. The methyl ester FAME obtained was within the standard of biodiesel fuel.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Tanat Chokpanyarat ◽  
Vittaya Punsuvon ◽  
Supakit Achiwawanich

The novel three-dimensionally ordered macroporous (3DOM) CaO/SiO2, 3DOM CaO/Al2O3, and 3DOM Ca12Al14O32Cl2 catalysts for biodiesel transesterification were prepared by sol-gel method. The 3DOM catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The hierarchical porous structure was achieved; however, only 3DOM CaO/Al2O3 and 3DOM Ca12Al14O32Cl2 catalysts were used for transesterification due to high amount of active CaO. Various parameters such as methanol to oil molar ratio, catalyst concentration, reaction time, and their influence on the biodiesel production were studied. The result showed that 99.0% RPO conversion was achieved using the 3DOM Ca12Al14O33Cl2 as a catalyst under the optimal condition of 12 : 1 methanol to oil molar ratio and 6 wt.% catalyst with reaction time of 3 hours at 65°C.


2020 ◽  
Vol 20 (4) ◽  
pp. 887 ◽  
Author(s):  
Nor Faeqah Idrus ◽  
Robiah Yunus ◽  
Zurina Zainal Abidin ◽  
Umer Rashid ◽  
Norazah Abd Rahman

Pentaerythritol tetraoleate esters synthesized from high oleic palm oil methyl ester (POME) have potential as biolubricant base stock. In the present study, the chemical transesterification of POME and pentaerythritol (PE) using sodium methoxide as a catalyst was conducted under vacuum. The effect of operating variables such as reaction temperature, catalyst concentration, the molar ratio of POME to PE, vacuum pressure, and stirring rate on the yield of PE tetraoleate was examined. The ideal conditions for the reaction were at a temperature of 160 °C, 1.25% (w/w) catalyst concentration, the molar ratio of POME to PE at 4.5:1, vacuum pressure at 10 mbar, and stirring speed at 900 rpm. PE tetraoleate with a yield of 36% (w/w), was successfully synthesized under this condition within 2 h of reaction time.


2020 ◽  
Vol 834 ◽  
pp. 16-23
Author(s):  
Pongchanun Luangpaiboon ◽  
Pasura Aungkulanon

Biodiesel was synthesized from direct transesterification of palm oil reacted with methanol in the presence of a suitable catalyst. There is a sequence of three consecutive reversible reactions for the transesterification process. These process parameters were optimized via the hybrid optimization approach of a conventional response surface method and artificial intelligence mechanisms from Sine Cosine and Thermal Exchange Optimization metaheuristics. The influential parameters and their combined interaction effects on the transesterification efficiency were established through a factorial designed experiments. In this study, the influential parameters being optimized to obtain the maximum yield of biodiesel were reaction temperature of 60–150°C, reaction time of 1–6 hours, methanol to oil molar ratio of 6:1–12:1 mol/mol and weight of catalyst of 1–10wt. %. On the first phase, the analysis of variance (ANOVA) revealed the reaction time as the most influential parameter on biodiesel production. Based on the experimental results from the hybrid algorithm via the SCO, it was concluded that the optimal biodiesel yield for the transesterification of palm oil were found to be 100°C for reaction temperature, 4 hours for reaction time, 10:1 wt/wt of ratio methanol to oil and 8% of weight of catalyst with 92.15% and 90.97% of biodiesel yield for expected and experimental values, respectively.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4306
Author(s):  
S. Ozkan ◽  
J. F. Puna ◽  
J. F. Gomes ◽  
T. Cabrita ◽  
J. V. Palmeira ◽  
...  

In this experimental work, calcium from natural seafood wastes was used as a heterogeneous catalyst separately or in a blend of “shell mix” for producing biodiesel. Several chemical reaction runs were conducted at varied reaction times ranging from 30 min to 8 h, at 60 °C, with a mass content of 5% (Wcat./Woil) and a methanol/oil molar ratio of 12. After the purification process, the biodiesel with fatty acid methyl ester (FAME) weight content measured was higher than 99%, which indicated that it was a pure biodiesel. This work also showed that the inorganic solid waste shell mixture used as the heterogeneous catalyst can be reused three times and the reused mixture still resulted in a FAME content higher than 99%. After 40 different transesterification reactions were performed using liquid (waste cooking oils) and solid (calcium seafood shells) wastes for producing biodiesel, under the specific conditions stated above, we found a successful, innovative, and promising way to produce biodiesel. In addition, blends prepared with jet fuel A1 and biodiesel were recorded with no invalid results after certain tests, at 25 °C. In this case, except for the 10% blend, the added biodiesel had no significant effect on the viscosity (fluidity) of the biojet fuel.


2018 ◽  
Vol 53 (1) ◽  
pp. 63-76
Author(s):  
M Shyamsundar ◽  
SZM Shamshuddin

Cordierite honeycombs were coated with solid acid catalysts such as ZrO2 (Z), Mo(VI)/ZrO2 (MZ) and Pt-SO4 2-/ZrO2 (PSZ) were prepared and characterized for their physico-chemical properties. These catalytic materials were characterized for their total surface acidity, crystallinity, functionality, elemental analysis and morphology by using techniques such as NH3 -TPD, PXRD, FTIR, ICP-OES, SEM and TEM respectively. These honeycomb catalysts were used for the liquid phase transesterification reaction of methyl salicylate (MS) with n-butanol (n-BA). Optimization of reaction conditions such as reaction temperature, reaction time, amount of catalysts and molar ratio of the reactants were carried out to obtain maximum yield of transester (n-butyl salicylate). n-butyl salicylate is obtained as major product and di-butyl ether is obtained as minor product. Highest total transester 70 % obtained by MZ and 80 % n-butyl salicylate and 10 % selectivity of di-butyl ether obtained in the presence of 0.4 g of honeycomb coated catalysts at a molar ratio of MS: n-BA 2:1, reaction temperature 403 K and reaction time 4 h. The energy of activation (16.81 and 14.92 kJ mol-1) and temperature coefficient (1.36 and 1.12) values of the MZ and PSZ were obtained from the kinetic studies. Pre-adsorption studies showed that the transesterification reaction methyl salicylate with n-butyl alcohol over honeycomb catalysts follows Langmuir-Hinshelwood mechanism. A reaction mechanism for transesterification is proposed based on the kinetic data. Reactivation and reusability studies of the honeycomb coated as well as powder form of catalysts up to 6 reaction cycles were also studied.Bangladesh J. Sci. Ind. Res.53(1), 63-76, 2018


2020 ◽  
Vol 849 ◽  
pp. 125-129
Author(s):  
Zahrul Mufrodi ◽  
Shinta Amelia

Esterification and transesterification processes for biodiesel production generate glycerol which is possible to be converted into triacetin. It is an actractive bioadditive for increasing octane number of fuel. The production of this bioadditive in a biodiesel plant also increases the revenue as raw material comes from biodiesel process production as by-product.This study examines the effects of catalyst concentration and temperature on triacetin production using glycerol from esterification process and acetic acid at volume ratio of 1:3 as raw materials. An activated charcoal as catalyst is activated with sulfuric acid at concentration of 2% and 3% (w/w). The esterification temperatures are varied at 90 and 100°C and the reaction time is set for 3 hours. The samples are taken frequently at certain interval times of 15, 30, and 60 minutes for chemical analysis using Gas Chromatography Mass Spectometry. It is observed that using 2% and 3% (w/w) of catalysts at 90°C and 60 minutes reaction time converts 41.037% and 57.441% of glycerol respectively.


2015 ◽  
Vol 98 (6) ◽  
pp. 1645-1654 ◽  
Author(s):  
Haixiang Zhao ◽  
Yongli Wang ◽  
Xiuli Xu ◽  
Heling Ren ◽  
Li Li ◽  
...  

Abstract A simple and accurate authentication method for the detection of adulterated vegetable oils that contain waste cooking oil (WCO) was developed. This method is based on the determination of cholesterol, β-sitosterol, and campesterol in vegetable oils and WCO by GC/MS without any derivatization. A total of 148 samples involving 12 types of vegetable oil and WCO were analyzed. According to the results, the contents and ratios of cholesterol, β-sitosterol, and campesterol were found to be criteria for detecting vegetable oils adulterated with WCO. This method could accurately detect adulterated vegetable oils containing 5% refined WCO. The developed method has been successfully applied to multilaboratory analysis of 81 oil samples. Seventy-five samples were analyzed correctly, and only six adulterated samples could not be detected. This method could not yet be used for detection of vegetable oils adulterated with WCO that are used for frying non-animal foods. It provides a quick method for detecting adulterated edible vegetable oils containing WCO.


Sign in / Sign up

Export Citation Format

Share Document