scholarly journals Research on Fault Diagnosis of Hydraulic System of Fast Erecting Device Based on Fuzzy Neural Network

Author(s):  
Yangbing Zheng ◽  
Xiao Xue ◽  
Jisong Zhang

In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.

2014 ◽  
Vol 8 (1) ◽  
pp. 916-921
Author(s):  
Yuan Yuan ◽  
Wenjun Meng ◽  
Xiaoxia Sun

To address deficiencies in the process of fault diagnosis of belt conveyor, this study uses a BP neural network algorithm combined with fuzzy theory to provide an intelligent fault diagnosis method for belt conveyor and to establish a BP neural network fault diagnosis model with a predictive function. Matlab is used to simulate the fuzzy BP neural network fault diagnosis of the belt conveyor. Results show that the fuzzy neural network can filter out unnecessary information; save time and space; and improve the fault diagnosis recognition, classification, and fault location capabilities of belt conveyor. The proposed model has high practical value for engineering.


2013 ◽  
Vol 473 ◽  
pp. 243-246
Author(s):  
Guo Li ◽  
Cheng Yao Jia ◽  
Wen Zheng Zhang

In order to make a research on the vehicle`s ABS and AFS system,the fuzzy neural network controller was designed on the basis of the electric vehicle`s steering and braking models. Then the genetic algorithms was used to improve the parameters of the membership function. Finally, the Matlab/Simulink simulation software has been used in the simulation analysis. The result of simulation proves that the designed system has good tracking performance and more stronger systemic robustness .


Sign in / Sign up

Export Citation Format

Share Document