scholarly journals Short Communication: Evaluation of drought tolerance indices for genotype selection of foxtail millet (Setaria italica)

2018 ◽  
Vol 2 (2) ◽  
pp. 37-40 ◽  
Author(s):  
SHERLY LAPUIMAKUNI ◽  
NURUL KHUMAIDA ◽  
SINTHO WAHYUNING ARDIE ◽  
SINTHO WAHYUNING ARDIE

Lapuimakuni S, Khumaida N, Ardie SW. 2018. Evaluation of drought tolerance indices for genotype selection of foxtail millet (Setaria italica). Trop Drylands 2: 37-40. Foxtail millet (Setaria italica (L.) Beauv) is one of underutilized crop grown for its nutritious grain and its relative tolerance to drought stress. Although foxtail millet has been reported as to be relatively tolerant to drought stress, the drought tolerance level of this crop is varied between genotypes. Thus, breeding approaches to develop drought-tolerant foxtail millet variety is of great importance. This study aimed to: (i) evaluate several drought tolerance indices to determine one or more predictors among studied indices, and (ii) identify the drought tolerance level of the evaluated foxtail millet genotypes. Eight foxtail millet genotypes were planted in a greenhouse with a completely randomized design and five replications under both drought and normal watering conditions. Staggered planting was applied to synchronize flowering time. Water was withheld for 15 days during the flowering period, and then plants were re-watered until harvest time. Multiple indices for drought tolerance were calculated based on the potential yield (Yp) under non-stress and yield (Ys) under stress conditions. Based on the correlation, principal component analysis, and cluster analysis, yield index (YI) and harmonic mean (HM) were considered the best indices for the selection of drought-tolerant foxtail millet genotypes. By using the best indices, two foxtail millet genotypes (ICERI-5 and ICERI-6) were considered as drought tolerant genotypes.

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 994
Author(s):  
Norain Jamalluddin ◽  
Festo J. Massawe ◽  
Sean Mayes ◽  
Wai Kuan Ho ◽  
Ajit Singh ◽  
...  

Amaranth (Amaranthus tricolor), an underutilized climate smart crop, is highly nutritious and possesses diverse drought tolerance traits, making it an ideal crop to thrive in a rapidly changing climate. Despite considerable studies on the growth and physiology of plants subjected to drought stress, a precise trait phenotyping strategy for drought tolerance in vegetable amaranth is still not well documented. In this study, two drought screening trials were carried out on 44 A. tricolor accessions in order to identify potential drought-tolerant A. tricolor germplasm and to discern their physiological responses to drought stress. The findings revealed that a change in stem biomass was most likely the main mechanism of drought adaptation for stress recovery, and dark-adapted quantum yield (Fv/Fm) could be a useful parameter for identifying drought tolerance in amaranth. Three drought tolerance indices: geometric mean productivity (GMP), mean productivity (MP) and stress tolerance index (STI) identified eight drought-tolerant accessions with stable performance across the two screening trials. The highly significant genotypic differences observed in several physiological traits among the amaranth accessions indicate that the amaranth panel used in this study could be a rich source of genetic diversity for breeding purposes for drought tolerance traits.


2014 ◽  
Vol 17 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Naser Sabaghnia ◽  
Mohsen Janmohammadi

Abstract Drought is one of the major abiotic stresses in agriculture worldwide, which limits crop production. The chickpea cultivation areas of Iran are fourth in the world after India, Pakistan and Turkey while most areas (95 %) are planted in rainfed condition and are grown in rotation with cereals. This investigation was carried out to investigate the effect of drought stress seed yield characteristic in seven genotypes of chickpea. A field experiment with two humidity regimes (stressed and non-stressed) was performed in a randomized complete block design layout with three replicates. The analysis of variance for both potential yield (YP) and stress yield (YS) indicated significant differences among seven chickpea genotypes. Also, significant differences were observed among chickpea genotypes regarding twelve drought tolerance indices. Based on the YP, the genotypes FLIP 03-64C, FLIP 98-106C, Arman and Azad had the highest yield under non-stressed condition, while the genotypes FLIP 98-106C and Azad displayed the highest yield under stressed condition. Therefore, the genotypes FLIP 98-106C and Azad are good candidates for commercial recommendation to farmers in both rainfed and irrigated conditions. The relationships among drought tolerance indices are graphically displayed in a plot of two first principal components analysis. The first and second components justified 95.46 % of the variations between criteria (59.36 and 36.10 % for PC1 and PC2, respectively). The STI, K1STI, MP, GMP and PI indices exhibited strong correlation with YP, while YI showed strong correlation with YS; therefore, YS can discriminate drought tolerant genotypes with high grain yield under stress conditions.


2020 ◽  
Vol 7 (2) ◽  
pp. 54-59
Author(s):  
Kamana Bhandari ◽  
Laxmi Prasad Joshi ◽  
Nikita Bhandari ◽  
Koshraj Upadhyay ◽  
Subarna Sharma

2017 ◽  
Vol 34 (4) ◽  
pp. 291-300 ◽  
Author(s):  
Mizan Tesfay Abraha ◽  
Hussein A Shimelis ◽  
Mark D Laing ◽  
Kebebew Assefa

2019 ◽  
Vol 13 (01) ◽  
pp. 170-178 ◽  
Author(s):  
Yosep S. Mau ◽  
◽  
Antonius S.S. Ndiwa ◽  
Shirly S. Oematan ◽  
Jenny E.R. Markus ◽  
...  

2013 ◽  
Vol 61 (2) ◽  
pp. 123-137
Author(s):  
E. Farshadfar ◽  
M. Geravandi

To evaluate the repeatability of yield-based drought tolerance indices over years, twenty chickpea genotypes were evaluated using a randomized complete block design with three replications for four cropping seasons (2008–2012) in the experimental field of Razi University. The result of combined analysis of variance for seed yield showed significant differences for location (L) (rain-fed and irrigated), genotype (G), and LY and GL interactions, indicating the presence of genetic variability and the possibility of selection for stable, drought-tolerant genotypes. Principal component analysis (PCA) based on the Spearman's rank correlation matrix was used to visualize the relationships between different drought tolerance indices. Due to their positive significant correlation with seed yield under both conditions over four cropping seasons, the stress tolerance index (STI) and geometric mean productivity (GMP) were identified as desirable criteria for the selection of drought-tolerant genotypes under severe stress conditions. The selection of drought-tolerant chickpea genotypes using these indices in a one-year trial will mirror the results of multiple cropping season trials. According to the Spearman's rank correlation coefficients between single vs. single years and single vs. the mean of multiple years, the tolerance index (TOL), mean productivity (MP), abiotic tolerance index (ATI), stress susceptibility percentage index (SSPI) and modified stress tolerance index (K1STI) were identified as repeatable indices under severe drought conditions.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Pooja Dhansu ◽  
Neeraj Kulshreshtha ◽  
Ravinder Kumar ◽  
Arun K. Raja ◽  
S. K. Pandey ◽  
...  

2021 ◽  
Vol 117 (1) ◽  
pp. 1
Author(s):  
Pooran GOLKAR ◽  
Esmaeil HAMZEH ◽  
Seyed Ali Mohammad MIRMOHAMMADY MAIBODY

<p>Improvement of elite safflower genotypes for drought-tolerance is hampered by a deficiency of effective selection criteria. The present study evaluated 100 genotypes of safflower in terms of their drought tolerance over a period of three years (2016–2018) under both non-stress and drought-stress conditions. The eight drought-tolerance indices of tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), stress susceptibility index (SSI), stress tolerance index (STI), yield stability index (YSI), drought resistance index (DI), and harmonic mean (HARM) were calculated based on seed yield under drought (Y<sub>s</sub>) and non-drought (Y<sub>p</sub>) conditions. A high genetic variation was found in drought tolerance among the genotypes studied. The MP, GMP, and STI indices were able to discriminate between tolerant and drought-sensitive genotypes. Plots of the first and second principal components identified drought-tolerant genotypes averaged over the three study years. Cluster analysis divided the genotypes into three distinct groups using the drought tolerance indices. Ultimately, eight genotypes (namely, G<sub>3</sub>, G<sub>11</sub>, G<sub>13</sub>, G<sub>24</sub>, G<sub>33</sub>, G<sub>47</sub>, G<sub>58</sub>, and G<sub>61</sub>) from different origins were detected as more tolerant to drought stress suitable for use in safflower breeding programs in drought-affected areas. The most tolerant and susceptible genotypes could be exploited to produce mapping populations for drought tolerance breeding programs in safflower.</p>


Sign in / Sign up

Export Citation Format

Share Document