Evaluation of Selection Indices for Drought Tolerance in Some Chickpea (Cicer Arietinum L.) Genotypes
Abstract Drought is one of the major abiotic stresses in agriculture worldwide, which limits crop production. The chickpea cultivation areas of Iran are fourth in the world after India, Pakistan and Turkey while most areas (95 %) are planted in rainfed condition and are grown in rotation with cereals. This investigation was carried out to investigate the effect of drought stress seed yield characteristic in seven genotypes of chickpea. A field experiment with two humidity regimes (stressed and non-stressed) was performed in a randomized complete block design layout with three replicates. The analysis of variance for both potential yield (YP) and stress yield (YS) indicated significant differences among seven chickpea genotypes. Also, significant differences were observed among chickpea genotypes regarding twelve drought tolerance indices. Based on the YP, the genotypes FLIP 03-64C, FLIP 98-106C, Arman and Azad had the highest yield under non-stressed condition, while the genotypes FLIP 98-106C and Azad displayed the highest yield under stressed condition. Therefore, the genotypes FLIP 98-106C and Azad are good candidates for commercial recommendation to farmers in both rainfed and irrigated conditions. The relationships among drought tolerance indices are graphically displayed in a plot of two first principal components analysis. The first and second components justified 95.46 % of the variations between criteria (59.36 and 36.10 % for PC1 and PC2, respectively). The STI, K1STI, MP, GMP and PI indices exhibited strong correlation with YP, while YI showed strong correlation with YS; therefore, YS can discriminate drought tolerant genotypes with high grain yield under stress conditions.