Programmable Logic Controller of a Pressurized Water Reactor Core Protection Calculator

2020 ◽  
Author(s):  
M. El-Genk ◽  
A. Hahn ◽  
T. Schriener
2013 ◽  
Vol 444-445 ◽  
pp. 411-415 ◽  
Author(s):  
Fu Cheng Zhang ◽  
Shen Gen Tan ◽  
Xun Hao Zheng ◽  
Jun Chen

In this study, a Computational Fluid Dynamic (CFD) model is established to obtain the 3-D flow characteristic, temperature distribution of the pressurized water reactor (PWR) upper plenum and hot-legs. In the CFD model, the flow domain includes the upper plenum, the 61 control rod guide tubes, the 40 support columns, the three hot-legs. The inlet boundary located at the exit of the reactor core and the outlet boundary is set at the hot-leg pipes several meters away from upper plenum. The temperature and flow distribution at the inlet boundary are given by sub-channel codes. The computational mesh used in the present work is polyhedron element and a mesh sensitivity study is performed. The RANS equations for incompressible flow is solved with a Realizable k-ε turbulence model using the commercial CFD code STAR-CCM+. The analysis results show that the flow field of the upper plenum is very complex and the temperature distribution at inlet boundary have significant impact to the coolant mixing in the upper plenum as well as the hot-legs. The detailed coolant mixing patterns are important references to design the reactor core fuel management and the internal structure in upper plenum.


2014 ◽  
Author(s):  
A. Ashaari ◽  
T. Ahmad ◽  
Mustaffa Shamsuddin ◽  
Wan Munirah W. M ◽  
M. Adib Abdullah

Author(s):  
Tianqi Zhang ◽  
Shihe Yu ◽  
Xinrong Cao

In order to research the performance of Pressurized Water Reactor (PWR) with 1/3 MOX fuel in the initial cycle, this paper serves Qinshan II reactor core as the reference core to design suitable MOX assemblies and study relevant core properties. The analyses documented within use assembly cross section calculation code CASMO-4 and core calculation code SIMULATE-3 studied by Studsvik. The purpose of this paper is to demonstrate that the Qinshan II reactor is capable of complying with the requirement for MOX fuel utilization without significant changes to the design of the plant. Several impacts on key physics parameters and safety analysis assumptions, introduced by MOX, are discussing in the paper.


Sign in / Sign up

Export Citation Format

Share Document