Existence and uniqueness of solutions for initial value problems of multi-order fractional differential equations on the half lines

2012 ◽  
Vol 42 (7) ◽  
pp. 735-756 ◽  
Author(s):  
YuJi LIU
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xia Wang ◽  
Run Xu

In this paper, we research CFR fractional differential equations with the derivative of order 3<α<4. We prove existence and uniqueness theorems for CFR-type initial value problem. By Green’s function and its corresponding maximum value, we obtain the Lyapunov-type inequality of corresponding equations. As for application, we study the eigenvalue problem in the sense of CFR.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Weera Yukunthorn ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

Impulsive multiorders fractional differential equations are studied. Existence and uniqueness results are obtained for first- and second-order impulsive initial value problems by using Banach’s fixed point theorem in an appropriate weighted space. Examples illustrating the main results are presented.


2018 ◽  
Vol 21 (3) ◽  
pp. 819-832 ◽  
Author(s):  
Chung-Sik Sin

Abstract In the present paper, initial value problems of fractional differential equations are considered. The fractional derivatives are defined as the general Caputo-type fractional derivatives proposed by Anatoly Kochubei. By using the Schauder fixed point theorem, the local existence, the global existence and the uniqueness of solutions are obtained under appropriate conditions. In addition, it is proved that the solution depends on the parameters of the equation in a continuous way.


Author(s):  
Chung-Sik Sin ◽  
Liancun Zheng

AbstractIn this paper we consider initial value problems for fractional differential equations involving Caputo differential operators. By establishing a new property of the Mittag-Leffler function and using the Schauder fixed point theorem, we obtain new sufficient conditions for the existence and uniqueness of global solutions of initial value problems.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1093
Author(s):  
Daniel Cao Labora

One major question in Fractional Calculus is to better understand the role of the initial values in fractional differential equations. In this sense, there is no consensus about what is the reasonable fractional abstraction of the idea of “initial value problem”. This work provides an answer to this question. The techniques that are used involve known results concerning Volterra integral equations, and the spaces of summable fractional differentiability introduced by Samko et al. In a few words, we study the natural consequences in fractional differential equations of the already existing results involving existence and uniqueness for their integral analogues, in terms of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely extended opinion. We compute explicitly the amount of necessary initial values and the orders of differentiability where these conditions need to be imposed.


Sign in / Sign up

Export Citation Format

Share Document