scholarly journals Significant alteration of liver metabolites by AAV8.Urocortin 2 gene transfer in mice with insulin resistance

PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0224428 ◽  
Author(s):  
Young Chul Kim ◽  
Agnieszka D. Truax ◽  
Dimosthenis Giamouridis ◽  
N. Chin Lai ◽  
Tracy Guo ◽  
...  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Bingxin Lu ◽  
Jianing Zhong ◽  
Jianfei Pan ◽  
Xiaopeng Yuan ◽  
Mingzhi Ren ◽  
...  

Abstract Background The growth differentiation factor 11 (GDF11) was shown to reverse age-related hypertrophy on cardiomyocytes and considered as anti-aging rejuvenation factor. The role of GDF11 in regulating metabolic homeostasis is unclear. In this study, we investigated the functions of GDF11 in regulating metabolic homeostasis and energy balance. Methods Using a hydrodynamic injection approach, plasmids carrying a mouse Gdf11 gene were delivered into mice and generated the sustained Gdf11 expression in the liver and its protein level in the blood. High fat diet (HFD)-induced obesity was employed to examine the impacts of Gdf11 gene transfer on HFD-induced adiposity, hyperglycemia, insulin resistance, and hepatic lipid accumulation. The impacts of GDF11 on metabolic homeostasis of obese and diabetic mice were examined using HFD-induced obese and STZ-induced diabetic models. Results Gdf11 gene transfer alleviates HFD-induced obesity, hyperglycemia, insulin resistance, and fatty liver development. In obese and STZ-induced diabetic mice, Gdf11 gene transfer restores glucose metabolism and improves insulin resistance. Mechanism study reveals that Gdf11 gene transfer increases the energy expenditure of mice, upregulates the expression of genes responsible for thermoregulation in brown adipose tissue, downregulates the expression of inflammatory genes in white adipose tissue and those involved in hepatic lipid and glucose metabolism. Overexpression of GDF11 also activates TGF-β/Smad2, PI3K/AKT/FoxO1, and AMPK signaling pathways in white adipose tissue. Conclusions These results demonstrate that GDF11 plays an important role in regulating metabolic homeostasis and energy balance and could be a target for pharmacological intervention to treat metabolic disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A565-A565
Author(s):  
J TALWALKAR ◽  
H TORGERSON ◽  
D BRANDHAGEN

2001 ◽  
Vol 120 (5) ◽  
pp. A356-A357
Author(s):  
M FURUKAWA ◽  
Y MAGAMI ◽  
D NAKAYAMA ◽  
F MORIYASU ◽  
J PARK ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document