scholarly journals Evaluation of the effect of carrier material on modification of release characteristics of poor water soluble drug from liquisolid compacts

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0249075
Author(s):  
Beenish Ali ◽  
Amjad Khan ◽  
Hamad S. Alyami ◽  
Majeed Ullah ◽  
Abdul Wahab ◽  
...  

Liquisolid compact is a novel dosage form in which a liquid medication (liquid drug, drug solution/dispersion in non-volatile solvent/solvent system) is converted to a dry, free flowing powder and compressed. Objective of the study was to elucidate the effect of carrier material on release characteristics of clopidogrel from liquisolid compacts. Different formulations of liquisolid compacts were developed using microcrystalline cellulose, starch maize, polyvinyl pyrollidone and hydroxypropyl methylcellulose as carrier material in three concentrations (40, 30 and 20%, w/w). Liquid vehicle was selected on the basis of solubility of clopidogrel. Colloidal silicondioxide was used as coating material and ratio of carrier to coating material was kept 10. A control formulation comprised of microcrystalline cellulose (diluents), tabletose-80 (diluents), primojel (disintegrant) and magnesium stearate (lubricant) was prepared by direct compression technique and was used for comparison. All the formulations were evaluated at pre and post compression level. Acid solubility profile showed higher solubility in HCl buffer pH2 (296.89±3.49 μg/mL). Mixture of propylene glycol and water (2:1, v/v) was selected as liquid vehicle. Drug content was in the range of 99–101% of the claimed quantity. All the formulations showed better mechanical strength and their friability was within the official limits (<1%). Microcrystalline cellulose and starch maize resulted in faster drug release while polyvinyl pyrollidone and HPMC resulted in sustaining drug release by gel formation. It is concluded from results that both fast release and sustained release of clopidogrel can be achieved by proper selection of carrier material.

Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
H G Sandip

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Ketoconazole. The liquisolid tablets were formulated with liquid medications, namely Propylene Glycol (PG) drug concentrations, 60% w/w, 70% w/w and 80% w/w. Avicel pH102 was used as a carrier material, Aerosil 200 as a coating material and Sodium starch glycollate as a super-disintegrant. Quality control tests, such as uniformity of tablet weight, uniformity of drug content, tablet hardness, friability test, disintegration and dissolution tests were performed to evaluate prepared tablets. For further confirmation of results the liquisolid compacts were evaluated by XRD and FTIR studies to prove that, solubility of Ketoconazole has been increased by liquisolid compact technique. From the results obtained, it was be speculated that such systems exhibit enhanced drug release profiles due to increased wetting properties and surface of drug available for dissolution. As liquisolid compacts demonstrated significantly higher drug release rates, in PG as compared to directly compressible tablets and conventional wet granulation, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.  


2019 ◽  
Vol 9 (4) ◽  
pp. 574-578
Author(s):  
Mohammad Faizan Mohammad Gufran ◽  
Sailesh Kumar Ghatuary ◽  
Reena Shende ◽  
Prabhat Kumar Jain ◽  
Geeta Parkhe

Formulation development is an important part of drug design and development. Bioavailability and bioequivalence are totally dependent on formulation development. Now-a-days formulation development is done by following QbD (Quality by Design).The aim of present study is to formulate Gemfibrozil (Gem) sustained release (SR) and immediate release (IR) bilayer tablet by different concentration of Hydroxypropyl methylcellulose (HPMC) and HPMC K 100 M to control the release pattern. The sustained release layer of Gem was prepared by using different grades of HPMC like, HPMC K-15, HPMC K-4 along with other excipients by direct compression technique. The immediate release layer of Gem was prepared by Cross carmellose sodium, Crospovidone and Sodium starch glycolate by direct compression technique. The powders were evaluated for their flow properties and the finished tablets were evaluated for their physical parameters. The both immediate release and sustained release layers of Gem were characterized by FT-IR and in vitro dissolution studies. The drug release study of Gem was evaluated using USP-II paddle type dissolution apparatus. The release rate of Gem in immediate release layer was studied for 15 min in 0.1 N HCL media and that of Gem in sustained release layer was studied for 12 h in 0.1 N HCL. From the nine batches F6 batch showed good release behaviour 99.85% of drug is released over 12 hours. Gem belongs to BCS Class II (log P 3.6) with poor solubility and high permeability resulting in limited and variable bioavailability. Total four trial batches of each drug have been manufactured to optimize and develop a robust and stable formulation, the stability studies of the products also comply with ICH guideline. Keywords: Bilayer floating tablets, Gemfibrozil, Biphasic drug release, HPMC K 15.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1872 ◽  
Author(s):  
Rishi Thakkar ◽  
Amit Raviraj Pillai ◽  
Jiaxiang Zhang ◽  
Yu Zhang ◽  
Vineet Kulkarni ◽  
...  

This research demonstrates the use of fill density as an effective tool for controlling the drug release without changing the formulation composition. The merger of hot-melt extrusion (HME) with fused deposition modeling (FDM)-based 3-dimensional (3-D) printing processes over the last decade has directed pharmaceutical research towards the possibility of printing personalized medication. One key aspect of printing patient-specific dosage forms is controlling the release dynamics based on the patient’s needs. The purpose of this research was to understand the impact of fill density and interrelate it with the release of a poorly water-soluble, weakly acidic, active pharmaceutical ingredient (API) from a hydroxypropyl methylcellulose acetate succinate (HPMC-AS) matrix, both mathematically and experimentally. Amorphous solid dispersions (ASDs) of ibuprofen with three grades of AquaSolveTM HPMC-AS (HG, MG, and LG) were developed using an HME process and evaluated using solid-state characterization techniques. Differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), and polarized light microscopy (PLM) confirmed the amorphous state of the drug in both polymeric filaments and 3D printed tablets. The suitability of the manufactured filaments for FDM processes was investigated using texture analysis (TA) which showed robust mechanical properties of the developed filament compositions. Using FDM, tablets with different fill densities (20–80%) and identical dimensions were printed for each polymer. In vitro pH shift dissolution studies revealed that the fill density has a significant impact (F(11, 24) = 15,271.147, p < 0.0001) and a strong negative correlation (r > −0.99; p < 0.0001) with the release performance, where 20% infill demonstrated the fastest and most complete release, whereas 80% infill depicted a more controlled release. The results obtained from this research can be used to develop a robust formulation strategy to control the drug release from 3D printed dosage forms as a function of fill density.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
V. J. Kapure ◽  
V. V. Pande ◽  
P. K. Deshmukh

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT). The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR) analysis, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.


2011 ◽  
Vol 61 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Canan Hasçiçek ◽  
Günseli Yüksel-Tilkan ◽  
Berna Türkmen ◽  
Nurten Özdemir

Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid Floating dosage forms of acetylsalicylic acid, used for its antithrombotic effect, were developed to prolong gastric residence time and increase bioavailability. In the two-layer tablet formulation, hydroxypropyl methylcellulose (HPMC) of high viscosity and an effervescent mixture of citric acid and sodium bicarbonate formed the floating layer. The release layer contained the drug, direct tableting agent and different types of matrix-forming polymers such as HPMC of low viscosity, sodium carboxymethylcellulose and chitosan. Tablets were prepared using a direct compression technique. The effect of formulation variables on physicochemical and floating properties and the drug release from tablets were investigated. Floating ability was dependent on the amount of effervescent agent and gel-forming polymer of the floating layer. Drug release was prolonged to 8 hours by changing the type and viscosity of the matrix-forming polymer in the drug-loading layer and all formulations showed a diffusion release mechanisms.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1034 ◽  
Author(s):  
Ezinwa Elele ◽  
Yueyang Shen ◽  
Rajyalakshmi Boppana ◽  
Afolawemi Afolabi ◽  
Ecevit Bilgili ◽  
...  

We demonstrate the ability to fabricate dosage forms of a poorly water-soluble drug by using wet stirred media milling of a drug powder to produce an aqueous suspension of nanoparticles and then print it onto a porous biocompatible film. Contrary to conventional printing technologies, a deposited material is pulled out from the nozzle. This feature enables printing highly viscous materials with a precise control over the printed volume. Drug (griseofulvin) nanosuspensions prepared by wet media milling were printed onto porous hydroxypropyl methylcellulose films prepared by freeze-drying. The drug particles retained crystallinity and polymorphic form in the course of milling and printing. The versatility of this technique was demonstrated by printing the same amount of nanoparticles onto a film with droplets of different sizes. The mean drug content (0.19–3.80 mg) in the printed films was predicted by the number of droplets (5–100) and droplet volume (0.2–1.0 µL) (R2 = 0.9994, p-value < 10−4). Our results also suggest that for any targeted drug content, the number-volume of droplets could be modulated to achieve acceptable drug content uniformity. Analysis of the model-independent difference and similarity factors showed consistency of drug release profiles from films with a printed suspension. Zero-order kinetics described the griseofulvin release rate from 1.8% up to 82%. Overall, this study has successfully demonstrated that the electro-hydrodynamic drop-on-demand printing of an aqueous drug nanosuspension enables accurate and controllable drug dosing in porous polymer films, which exhibited acceptable content uniformity and reproducible drug release.


1970 ◽  
Vol 7 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Bendgude Namdeo ◽  
Iyer Vidya ◽  
Poddar Sushilkumar

In the present investigation an attempt has been made to increase therapeutic efficacy, reduce frequency of administration and improve patient compliance by developing controlled release matrix tablets of diltiazem hydrochloride. Diltiazem hydrochloride was formulated as oral controlled release matrix tablets by using sterculia foetida gum. SFG fines were characterized with scanning electron microscopy. The purpose of this study was to optimize release profile of the highly water soluble drug from SFG matrix by using water soluble and swellable excipients like lactose and microcrystalline cellulose respectively. Tablets were prepared by direct compression, and their swelling behavior in presence of these excipients was assessed with the help of a Texture Analyzer. Dissolution assessment was performed using USP 26 apparatus 2 modified by insertion of a mesh to prevent sticking of the tablets to the bottom of vessel and allow them to swell three dimensionally. The interdependence of swelling front movement in relation to excipients type and progression of drug release are explained. It was concluded that unlike in conventional dosage forms insertion of excipients in hydrophilic controlled release tablets containing a water soluble drug gave the finger print information of drug release profile. In vitro drug release from these matrices was characterized and confirmed with the help of real time texture probing. Results indicated that it is possible to achieve desired modulation in the drug release profile by inclusion of lactose and microcrystalline cellulose. Key words: Diltiazem HCl, Sterculia Foetida Gum, Swelling and erosion, Lactose, Texture analysis. doi: 10.3329/dujps.v7i2.2167 Dhaka Univ. J. Pharm. Sci. 7(2): 127-132, 2008 (December)


2005 ◽  
Vol 73 (1) ◽  
pp. 59-74
Author(s):  
Lütfi Genç ◽  
A. Kıran

Sustained release matrix tablets of clarithromycin were prepared using different polymers as Hydroxypropyl methylcellulose (H PMC), Carbopol 934 and Eudragit RL/PO by direct compression technique. For the quality control of these formulations, weight deviation, hardness, friability, diameter-height ratio, content uniformity of the active substance and in vitro dissolution technique were performed. HPLC was used for the assay of clarithromycin and the assay method was validated. Dissolution profiles of the tablets were plotted and evaluated kinetically. The effects on drug release of polymer type and concentrations were investigated by 23 factorial design. The tablets containing HPMC, Carbopol 934 and Eudragit RLIPO were found suitably to sustain drug release


Author(s):  
Y. Madhusudan Rao ◽  
N Doodipala ◽  
C R Palem ◽  
S Reddy

The most common approach for achieving sustained drug release is by the use of hydrophilic polymeric excipients directly compressed with active ingredients into tablets. Hydrophilic polymers swell in the presence of water to form hydrogel structures from which drugs are released by slow diffusion. The purpose of this study was to prepare a floating drug delivery system of levofloxacin, a fluoroquinolone antibiotic.  Levofloxacin is highly soluble in acidic media and precipitates in alkaline media, thereby losing its solubility. We designed a gastroretentive system of levofloxacin to enhance bioavailability by retaining them in the acidic environment of the stomach. Tablets were prepared by the direct compression technique using polymers such as hydroxypropyl- methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M). Sodium bicarbonate was utilized as a gas-generating agent. Tables were evaluated for their physical characteristics such as hardness, thickness, friability, weight variation, drug content, swelling studies, and floating properties. Tablet formulations were evaluated by in vitro dissolution studies. Formulations showed a floating lag time of 30 seconds and a floating time above 12 hours. Among these formulations F3, F7 and F11 exhibited controlled and prolonged drug release profiles while floating over the dissolution medium. The best formulation (F3) was selected based on in vitro characteristics and further tested in healthy volunteers by radiographic studies of tablets by incorporating BaSO4. These clinical studies revealed that the tablets remained in the stomach for 240 ± 30 minutes in fasting human volunteers, indicating gastric retention of the system.


Sign in / Sign up

Export Citation Format

Share Document