scholarly journals Co-chaperone involvement in knob biogenesis implicates host-derived chaperones in malaria virulence

2021 ◽  
Vol 17 (10) ◽  
pp. e1009969
Author(s):  
Mathias Diehl ◽  
Lena Roling ◽  
Lukas Rohland ◽  
Sebastian Weber ◽  
Marek Cyrklaff ◽  
...  

The pathology associated with malaria infection is largely due to the ability of infected human RBCs to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin. ATPase assays on recombinant protein verify a functional interaction between PFA66 and residual host cell HSP70. Taken together, our data reveal a role for PFA66 in host cell modification, strongly implicate human HSP70s as being essential in this process and uncover a new KAHRP-independent molecular factor required for correct knob biogenesis.

2021 ◽  
Author(s):  
Mathias Diehl ◽  
Sebastian Weber ◽  
Marek Cyrklaff ◽  
Cecilia P. Sanchez ◽  
Carlo A. Beretta ◽  
...  

AbstractThe pathology associated with malaria infection is largely due to the ability of infected human erythrocytes to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin.Taken together, our data reveal a role for PFA66 in host cell modification, implicate human HSP70 as also being essential in this process, and uncover a KAHRP-independent mechanism for correct knob biogenesis. Our observations open up exciting new avenues for the development of new anti-malarials.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Cristina Lourdes Vázquez ◽  
María Verónica Bianco ◽  
Federico Carlos Blanco ◽  
Marina Andrea Forrellad ◽  
Maximiliano Gabriel Gutierrez ◽  
...  

ABSTRACT Mycobacterium bovis causes tuberculosis in a wide variety of mammals, with strong tropism for cattle and eventually humans. P27, also called LprG, is among the proteins involved in the mechanisms of the virulence and persistence of M. bovis and Mycobacterium tuberculosis. Here, we describe a novel function of P27 in the interaction of M. bovis with its natural host cell, the bovine macrophage. We found that a deletion in the p27-p55 operon impairs the replication of M. bovis in bovine macrophages. Importantly, we show for the first time that M. bovis arrests phagosome maturation in a process that depends on P27. This effect is P27 specific since complementation with wild-type p27 but not p55 fully restored the wild-type phenotype of the mutant strain; this indicates that P55 plays no important role during the early events of M. bovis infection. In addition, we also showed that the presence of P27 from M. smegmatis decreases the association of LAMP-3 with bead phagosomes, indicating that P27 itself blocks phagosome-lysosome fusion by modulating the traffic machinery in the cell host.


1997 ◽  
Vol 272 (31) ◽  
pp. 19594-19600 ◽  
Author(s):  
Ernst Ungewickell ◽  
Huberta Ungewickell ◽  
Susanne E. H. Holstein

mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Julia V. Monjarás Feria ◽  
Matthew D. Lefebre ◽  
York-Dieter Stierhof ◽  
Jorge E. Galán ◽  
Samuel Wagner

ABSTRACTType III secretion systems (T3SSs) are multiprotein machines employed by many Gram-negative bacteria to inject bacterial effector proteins into eukaryotic host cells to promote bacterial survival and colonization. The core unit of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins through the bacterial envelope. A distinct feature of the T3SS is that protein export occurs in a strictly hierarchical manner in which proteins destined to form the needle complex filament and associated structures are secreted first, followed by the secretion of effectors and the proteins that will facilitate their translocation through the target host cell membrane. The secretion hierarchy is established by complex mechanisms that involve several T3SS-associated components, including the “switch protein,” a highly conserved, inner membrane protease that undergoes autocatalytic cleavage. It has been proposed that the autocleavage of the switch protein is the trigger for substrate switching. We show here that autocleavage of theSalmonella entericaserovar Typhimurium switch protein SpaS is an unregulated process that occurs after its folding and before its incorporation into the needle complex. Needle complexes assembled with a precleaved form of SpaS function in a manner indistinguishable from that of the wild-type form. Furthermore, an engineered mutant of SpaS that is processed by an external protease also displays wild-type function. These results demonstrate that the cleavage eventper sedoes not provide a signal for substrate switching but support the hypothesis that cleavage allows the proper conformation of SpaS to render it competent for its switching function.IMPORTANCEBacterial interaction with eukaryotic hosts often involves complex molecular machines for targeted delivery of bacterial effector proteins. One such machine, the type III secretion system of some Gram-negative bacteria, serves to inject a multitude of structurally diverse bacterial proteins into the host cell. Critical to the function of these systems is their ability to secrete proteins in a strict hierarchical order, but it is unclear how the mechanism of switching works. Central to the switching mechanism is a highly conserved inner membrane protease that undergoes autocatalytic cleavage. Although it has been suggested previously that the autocleavage event is the trigger for substrate switching, we show here that this is not the case. Rather, our results show that cleavage allows the proper conformation of the protein to render it competent for its switching function. These findings may help develop inhibitors of type III secretion machines that offer novel therapeutic avenues to treat various infectious diseases.


2015 ◽  
Vol 89 (14) ◽  
pp. 7159-7169 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

ABSTRACTWhereas most viruses require only a single protein to bind to and fuse with cells, herpesviruses use multiple glycoproteins to mediate virus entry, and thus communication among these proteins is required. For most alphaherpesviruses, the minimal set of viral proteins required for fusion with the host cell includes glycoproteins gD, gB, and a gH/gL heterodimer. In the current model of entry, gD binds to a cellular receptor and transmits a signal to gH/gL. This signal then triggers gB, the conserved fusion protein, to insert into the target membrane and refold to merge the viral and cellular membranes. We previously demonstrated that gB homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and saimiriine herpesvirus 1 (SaHV-1), were interchangeable. In contrast, neither gD nor gH/gL functioned with heterotypic entry glycoproteins, indicating that gD and gH/gL exhibit an essential type-specific functional interaction. To map this homotypic interaction site on gH/gL, we generated HSV-1/SaHV-1 gH and gL chimeras. The functional interaction with HSV-1 gD mapped to the N-terminal domains I and II of the HSV-1 gH ectodomain. The core of HSV-1 gL that interacts with gH also was required for functional homotypic interaction. The N-terminal gH/gL domains I and II are the least conserved and may have evolved to support species-specific glycoprotein interactions.IMPORTANCEThe first step of the herpesvirus life cycle is entry into a host cell. A coordinated interaction among multiple viral glycoproteins is required to mediate fusion of the viral envelope with the cell membrane. The details of how these glycoproteins interact to trigger fusion are unclear. By swapping the entry glycoproteins of two alphaherpesviruses (HSV-1 and SaHV-1), we previously demonstrated a functional homotypic interaction between gD and gH/gL. To define the gH and gL requirements for homotypic interaction, we evaluated the function of a panel of HSV-1/SaHV-1 gH and gL chimeras. We demonstrate that domains I and II of HSV-1 gH are sufficient to promote a functional, albeit reduced, interaction with HSV-1 gD. These findings contribute to our model of how the entry glycoproteins cooperate to mediate herpesvirus entry into the cell.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Omid Teymournejad ◽  
Mingqun Lin ◽  
Yasuko Rikihisa

ABSTRACT The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most genes that confer resistance to oxidative stress but can block reactive oxygen species (ROS) generation by host monocytes-macrophages. Bacterial and host molecules responsible for this inhibition have not been identified. To infect host cells, Ehrlichia uses the C terminus of its surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C), which directly binds the mammalian cell surface receptor glycosylphosphatidylinositol-anchored protein DNase X. We investigated whether EtpE-C binding to DNase X blocks ROS production by mouse bone marrow-derived macrophages (BMDMs). On the basis of a luminol-dependent chemiluminescence assay, E. chaffeensis inhibited phorbol myristate acetate (PMA)-induced ROS generation by BMDMs from wild-type, but not DNase X−/−, mice. EtpE-C is critical for inhibition, as recombinant EtpE-C (rEtpE-C)-coated latex beads, but not recombinant N-terminal EtpE-coated or uncoated beads, inhibited PMA-induced ROS generation by BMDMs from wild-type mice. DNase X is required for this inhibition, as none of these beads inhibited PMA-induced ROS generation by BMDMs from DNase X−/− mice. Previous studies showed that E. chaffeensis does not block ROS generation in neutrophils, a cell type that is a potent ROS generator but is not infected by E. chaffeensis. Human and mouse peripheral blood neutrophils did not express DNase X. Our findings point to a unique survival mechanism of ROS-sensitive obligate intramonocytic bacteria that involves invasin EtpE binding to DNase X on the host cell surface. This is the first report of bacterial invasin having such a subversive activity on ROS generation. IMPORTANCE Ehrlichia chaffeensis preferentially infects monocytes-macrophages and causes a life-threatening emerging tick-transmitted infectious disease called human monocytic ehrlichiosis. Ehrlichial infection, and hence the disease, depends on the ability of this bacterium to avoid or overcome powerful microbicidal mechanisms of host monocytes-macrophages, one of which is the generation of ROS. Our findings reveal that an ehrlichial surface invasin, EtpE, not only triggers bacterial entry but also blocks ROS generation by host macrophages through its host cell receptor, DNase X. As ROS sensitivity is an Achilles’ heel of this group of pathogens, understanding the mechanism by which E. chaffeensis rapidly blocks ROS generation suggests a new approach for developing effective anti-infective measures. The discovery of a ROS-blocking pathway is also important, as modulation of ROS generation is important in a variety of ailments and biological processes. IMPORTANCE Ehrlichia chaffeensis preferentially infects monocytes-macrophages and causes a life-threatening emerging tick-transmitted infectious disease called human monocytic ehrlichiosis. Ehrlichial infection, and hence the disease, depends on the ability of this bacterium to avoid or overcome powerful microbicidal mechanisms of host monocytes-macrophages, one of which is the generation of ROS. Our findings reveal that an ehrlichial surface invasin, EtpE, not only triggers bacterial entry but also blocks ROS generation by host macrophages through its host cell receptor, DNase X. As ROS sensitivity is an Achilles’ heel of this group of pathogens, understanding the mechanism by which E. chaffeensis rapidly blocks ROS generation suggests a new approach for developing effective anti-infective measures. The discovery of a ROS-blocking pathway is also important, as modulation of ROS generation is important in a variety of ailments and biological processes.


2006 ◽  
Vol 74 (1) ◽  
pp. 537-548 ◽  
Author(s):  
Rocío Canals ◽  
Natalia Jiménez ◽  
Silvia Vilches ◽  
Miguel Regué ◽  
Susana Merino ◽  
...  

ABSTRACT Mesophilic Aeromonas hydrophila strains of serotype O34 typically express smooth lipopolysaccharide (LPS) on their surface. A single mutation in the gene that codes for UDP N-acetylgalactosamine 4-epimerase (gne) confers the O− phenotype (LPS without O-antigen molecules) on a strain in serotypes O18 and O34, but not in serotypes O1 and O2. The gne gene is present in all the mesophilic Aeromonas strains tested. No changes were observed for the LPS core in a gne mutant from A. hydrophila strain AH-3 (serotype O34). O34 antigen LPS contains N-acetylgalactosamine, while no such sugar residue forms part of the LPS core from A. hydrophila AH-3. Some of the pathogenic features of A. hydrophila AH-3 gne mutants are drastically reduced (serum resistance or adhesion to Hep-2 cells), and the gne mutants are less virulent for fish and mice compared to the wild-type strain. Strain AH-3, like other mesophilic Aeromonas strains, possess two kinds of flagella, and the absence of O34 antigen molecules by gne mutation in this strain reduced motility without any effect on the biogenesis of both polar and lateral flagella. The reintroduction of the single wild-type gne gene in the corresponding mutants completely restored the wild-type phenotype (presence of smooth LPS) independently of the O wild-type serotype, restored the virulence of the wild-type strain, and restored motility (either swimming or swarming).


1998 ◽  
Vol 111 (11) ◽  
pp. 1535-1544 ◽  
Author(s):  
W. Xu ◽  
J.L. Coll ◽  
E.D. Adamson

Vinculin plays a role in signaling between integrins and the actin cytoskeleton. We reported earlier that F9-derived cells lacking vinculin are less spread, less adhesive, and move two times faster than wild-type F9 cells. Expression of intact vinculin in null cells restored all wild-type characteristics. In contrast, expression of the head (90 kDa) fragment exaggerated mutant characteristics, especially locomotion, which was double that of vinculin null cells. Expression of the tail domain also had a marked effect on locomotion in the opposite direction, reducing it to very low levels. The expression of the head plus tail domains together (no covalent attachment) effected a partial rescue towards wild-type phenotype, thus indicating that reexpressed polypeptides may be in their correct location and are interacting normally. Therefore, we conclude that: (1) the head domain is part of the locomotory force of the cell, modulated by the tail, and driven by the integrin/matrix connection; (2) intact vinculin is required for normal regulation of cell behavior, suggesting that vinculin head-tail interactions control cell adhesion, spreading, lamellipodia formation and locomotion.


1995 ◽  
Vol 268 (2) ◽  
pp. G374-G379 ◽  
Author(s):  
J. Spitz ◽  
R. Yuhan ◽  
A. Koutsouris ◽  
C. Blatt ◽  
J. Alverdy ◽  
...  

The mechanism by which enteropathogenic Escherichia coli (EPEC) causes diarrhea remains elusive. Several alterations within the host cell have been demonstrated to occur following EPEC attachment including increases in intracellular Ca2+ concentration and rearrangement and phosphorylation of several cytoskeletal proteins. The consequences of these intracellular perturbations on host cell function, however, have not been determined. The aim of this study was to examine the effect of EPEC adherence on intestinal epithelial barrier function. T84 cell monolayers were infected with either wild-type EPEC or a nonadherent isogenic derivative. Transepithelial electrical resistance, a measure of barrier function, decreased 33.5 +/- 6.4% after a 6-h incubation with the wild-type strain. Electron microscopy revealed ultrastructurally normal cells, and lactate dehydrogenase release assays failed to demonstrate cytotoxicity. Dual 22Na+ and [3H]mannitol flux studies localized the permeability defect to tight junctions. In addition, cumulative flux of the paracellular marker mannitol was four- to fivefold greater across monolayers infected with wild-type EPEC. Sequestration of intracellular calcium stores by dantrolene completely abrogated the resistance drop associated with EPEC attachment. These data demonstrate that adherence of EPEC to intestinal epithelial cell monolayers disrupts tight junction barrier function via a calcium-requiring event.


2012 ◽  
Vol 23 (13) ◽  
pp. 2593-2604 ◽  
Author(s):  
Katsuhiro Kato ◽  
Tsubasa Yazawa ◽  
Kentaro Taki ◽  
Kazutaka Mori ◽  
Shujie Wang ◽  
...  

Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front–rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2–containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.


Sign in / Sign up

Export Citation Format

Share Document