scholarly journals Stop beating the donkey! A fresh interpretation of conditional donkey sentences.

Author(s):  
María José Frápolli ◽  
Aránzazu San Ginés

We propose a new approach to conditional donkey sentences that allows us to face successfully the often called proportion problem. The main ingredients of the proposal are van Benthem's generalized quantifier approach to conditionals (van Benthem, 1984), and Barwise's situation semantics (Barwise, 1989). We present some experimental data supporting our proposal.

1992 ◽  
Vol 57 (1) ◽  
pp. 33-45
Author(s):  
Vladimír Jakuš

A new approach to theoretical evaluation of the Gibbs free energy of solvation was applied for estimation of retention data in high-performance liquid chromatography on reversed phases (RP-HPLC). Simple and improved models of stationary and mobile phases in RP-HPLC were employed. Statistically significant correlations between the calculated and experimental data were obtained for a heterogeneous series of twelve compounds.


2000 ◽  
Author(s):  
M. Modigell ◽  
M. Weng

Abstract The present paper proposes a new approach to analyse the conversion of complexly composed particles that are dispersed in a cyclone gas flow at high temperatures. The numeric simulation of flow field and particle trajectories is coupled with a thermodynamic equilibrium calculation which describes the particle reaction progress. First simulation results and the comparison with experimental data are shown in this paper.


1976 ◽  
Vol 31 (12) ◽  
pp. 1489-1499
Author(s):  
E. Czuchaj

Abstract A new approach to the calculation of a teratomic recombination rate constant k(T) has been dem-onstrated. An expression for k(T) has been obtained in the eikonal approximation. The numerical calculation has been carried out for the Rb*-Xe system. Good agreement in the order of magnitude between the present results and the experimental data of Carrington et al. has been obtained.


1993 ◽  
Vol 321 ◽  
Author(s):  
Jung H. Shin ◽  
Harry A. Atwater

ABSTRACTA general approach to the dynamics of structural relaxation in amorphous solids is developed. A form of the recombination kinetics of defects is chosen which removes the ad hoc assumption made in previous theories that defects recombine only with others of identical activation energy. The generalized theory is tested quantitatively by modelling the structural relaxation of amorphous silicon, and comparing the results with the experimental data on structural relaxation. It is found that the generalized theory is necessary in order to accurately describe the time-resolved relaxation data. The generalized theory is also applied to estimate the effect of irradiation on the nucleation kinetics of crystal silicon, and is found to agree well with experimental data.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
M. Fossa ◽  
A. Marchitto

A new approach to the classical slug flow model is here proposed based on an original correlation for the minimum liquid level in the stratified regions of intermittent horizontal flows. This correlation is obtained by fitting experimental data obtained from a statistical analysis of void fraction signals from ring impedance probes. The new procedure improves the original model in terms of computing time reduction and algorithm simplification. In addition, it is demonstrated that the new closure relationship can be derived with more consistent experimental results, with respect to the slug length, which is employed in the original approach. The predictions of the main flow parameters are presented with reference to the classical and new approach, and all the results are critically compared with literature experimental data. It is demonstrated that the simplified procedure is able to predict the pressure drops and average void fraction values in good agreement with experimental measurements, while only the slug frequency and slug length predictions are affected by poor reliability.


2007 ◽  
Vol 280-283 ◽  
pp. 1757-1760 ◽  
Author(s):  
He Zhuo Miao ◽  
Jiang Hong Gong ◽  
Zhi Jian Peng

We established a new expression to describe the nanoindentation unloading data by assuming that the Berkovich indenter behaves as a conical punch, rather than a paraboloid punch, and properly considering the effect of residual contact stress on the unloading load-displacement relation. The validity of this new approach was confirmed by analyzing the experimental data obtained for a series of brittle materials. It was shown that, compared with the generally adopted power law, this new expression has much clearer physical significance.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650041 ◽  
Author(s):  
S. Sharma ◽  
M. Kaur ◽  
Sandeep Kaur

The nonextensive behavior of entropy is exploited to explain the regularity in multiplicity distributions in [Formula: see text] collisions at high energies. The experimental data are analyzed by using Tsallis [Formula: see text]-statistics. We propose a new approach of applying Tsallis [Formula: see text]-statistics, wherein the multiplicity distribution is divided into two components; two-jet and multijet components. A convoluted Tsallis distribution is fitted to the data. It is shown that this method gives the best fits which are several orders better than the conventional fit of Tsallis distribution.


2017 ◽  
Vol 72 (8) ◽  
pp. 757-762 ◽  
Author(s):  
Andrey Leonidovich Rozov

AbstractWe discuss the feasibility of using, along with Minkowski equations obtained on the basis of the theory of relativity and used at present in electrodynamics, alternative methods of describing the processes of interaction between electromagnetic fields and moving media. In this article, a way of describing electromagnetic fields in terms of classical mechanics is offered. A system of electrodynamic equations for slowly moving media was derived on the basis of Maxwell’s theory within the framework of classical mechanics using Wilsons’ experimental data with dielectrics in a previous article [A. Rozov, Z. Naturforsch. 70, 1019 (2015)]. This article puts forward a physical model that explains the features of the derived equations. The offered model made it possible to suggest a new approach to the derivation of electrodynamic equations for slowly moving media. A variant of Galileo’s relativity principle, in accordance with which the electrodynamic equations for slowly moving media should be considered as Galilean-invariant, is laid down on the basis of both the interpretation of Galileo’s concept following from Galileo’s works and Pauli’s concept of postulate of relativity within the framework of the represented physical model.


2020 ◽  
Vol 57 (2) ◽  
pp. 151-175
Author(s):  
Tadeusz Caliński ◽  
Agnieszka Łacka ◽  
Idzi Siatkowski

SummaryThis paper provides estimation and hypothesis testing procedures for experiments in split-plot designs. These experiments have been shown to have a convenient orthogonal block structure when properly randomized. Due to this property, the analysis of experimental data can be carried out in a relatively simple manner. Relevant simplification procedures are indicated. According to the adopted approach, the analysis of variance and hypothesis testing procedures can be performed directly, rather than by combining the results of analyses based on some stratum submodels. The practical application of the presented theory is illustrated by examples of real experiments in appropriate split-plot designs. The present paper is the fourth in the planned series of publications on the analysis of experiments with orthogonal block structure.


Sign in / Sign up

Export Citation Format

Share Document