scholarly journals The ample cone of moduli spaces of sheaves on the plane

2016 ◽  
Vol 3 (1) ◽  
pp. 106-136 ◽  
Author(s):  
Izzet Coskun ◽  
Jack Huizenga
2018 ◽  
Vol 24 (5) ◽  
pp. 3889-3926 ◽  
Author(s):  
Jan Manschot ◽  
Sergey Mozgovoy

1996 ◽  
Vol 07 (02) ◽  
pp. 151-181 ◽  
Author(s):  
YI HU

We expose in detail the principle that the relative geometric invariant theory of equivariant morphisms is related to the GIT for linearizations near the boundary of the G-effective ample cone. We then apply this principle to construct and reconstruct various universal moduli spaces. In particular, we constructed the universal moduli space over [Formula: see text] of Simpson’s p-semistable coherent sheaves and a canonical rational morphism from the universal Hilbert scheme over [Formula: see text] to a compactified universal Picard.


Sign in / Sign up

Export Citation Format

Share Document