scholarly journals An Overview of Recent Trends in Additive Manufacturing with Polymer Powders, Production, Applications and Developments

2021 ◽  
Vol 33 (4) ◽  
pp. 701-711
Author(s):  
HARRY CHIRIRIWA

In this article, an overview of three dimensional printing, also known as additive manufacturing (AM), with a focus on polymers is presented. As a starting point the additive manufacturing concept is described. Several well established technologies, including their advantages and drawbacks and a list of polymers, which are commonly used in commercial printers are evaluated and outlined. The additive manufacturing applications together with the key developments are also presented. The article further highlights major industrial applications, directions for promising research are identified, possible full exploitation potential of additive manufacturing in industries and finally outlines future challenges in this rapidly growing industries.

Author(s):  
Antonio Sartal ◽  
Diego Carou ◽  
Rubén Dorado-Vicente ◽  
Lorenzo Mandayo

Our research explores how additive manufacturing can support the food industry in facing its current global challenges. Although information technologies are usually highlighted as the main driver of the Industry 4.0 concept, which was first introduced during the Hannover Fair event in 2011, we posit that additive manufacturing can be the true generator of a sustainable competitive advantage in this sector. This evidence stems from a case study in a plant of one of the world’s largest fishing multinational companies. Our results show how, through robotic claw optimization using three-dimensional printing, we not only reduce the manufacturing costs but also increase the flexibility of the line and reduce time to market. On the one hand, our findings should encourage managers to test this technology at their facilities; on the other hand, policymakers should promote the adoption of additive manufacturing, highlighting the potential of this technology within the Industry 4.0 context.


2017 ◽  
Vol 24 (4) ◽  
pp. 436-444 ◽  
Author(s):  
Hongxing Luo ◽  
Jarosław Meyer-Szary ◽  
Zhongmin Wang ◽  
Robert Sabiniewicz ◽  
Yuhao Liu

2019 ◽  
Vol 109 (2) ◽  
pp. 166-173 ◽  
Author(s):  
A.B.V. Pettersson ◽  
M. Salmi ◽  
P. Vallittu ◽  
W. Serlo ◽  
J. Tuomi ◽  
...  

Background and Aims: Additive manufacturing or three-dimensional printing is a novel production methodology for producing patient-specific models, medical aids, tools, and implants. However, the clinical impact of this technology is unknown. In this study, we sought to characterize the clinical adoption of medical additive manufacturing in Finland in 2016–2017. We focused on non-dental usage at university hospitals. Materials and Methods: A questionnaire containing five questions was sent by email to all operative, radiologic, and oncologic departments of all university hospitals in Finland. Respondents who reported extensive use of medical additive manufacturing were contacted with additional, personalized questions. Results: Of the 115 questionnaires sent, 58 received answers. Of the responders, 41% identified as non-users, including all general/gastrointestinal (GI) and vascular surgeons, urologists, and gynecologists; 23% identified as experimenters or previous users; and 36% identified as heavy users. Usage was concentrated around the head area by various specialties (neurosurgical, craniomaxillofacial, ear, nose and throat diseases (ENT), plastic surgery). Applications included repair of cranial vault defects and malformations, surgical oncology, trauma, and cleft palate reconstruction. Some routine usage was also reported in orthopedics. In addition to these patient-specific uses, we identified several off-the-shelf medical components that were produced by additive manufacturing, while some important patient-specific components were produced by traditional methodologies such as milling. Conclusion: During 2016–2017, medical additive manufacturing in Finland was routinely used at university hospitals for several applications in the head area. Outside of this area, usage was much less common. Future research should include all patient-specific products created by a computer-aided design/manufacture workflow from imaging data, instead of concentrating on the production methodology.


2019 ◽  
Vol 70 (14) ◽  
pp. 3453-3466 ◽  
Author(s):  
Bernard Thibaut

AbstractWood is well defined as an engineering material. However, living wood in the tree is often regarded only as a passive skeleton consisting of a sophisticated pipe system for the ascent of sap and a tree-like structure made of a complex material to resist external forces. There are two other active key roles of living wood in the field of biomechanics: (i) additive manufacturing of the whole structure by cell division and expansion, and (ii) a ‘muscle’ function of living fibres or tracheids generating forces at the sapwood periphery. The living skeleton representing most of the sapwood is a mere accumulation of dead tracheids and libriform fibres after their programmed cell death. It keeps a record of the two active roles of living wood in its structure, chemical composition, and state of residual stresses. Models and field experiments define four biomechanical traits based on stem geometry and parameters of wood properties resulting from additive manufacturing and force generation. Geometric parameters resulting from primary and secondary growth play the larger role. Passive wood properties are only secondary parameters, while dissymmetric force generation is key for movement, posture control, and tree reshaping after accidents.


2017 ◽  
Vol 14 (127) ◽  
pp. 20160783 ◽  
Author(s):  
Jonas O. Wolff ◽  
Marie E. Herberstein

The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates.


2018 ◽  
Vol 3 (2) ◽  
pp. 24-33
Author(s):  
Filipa Pinto de Oliveira

consider to be a synonymous of additive manufacturing has made its way into the medical field, not only manufacturing medical appliances, study models or building prosthetics. The demand for bone substitution surgeries is growing every year, due to the increase in pathologies affecting bone structure (both traumatic and not traumatic). Nowadays with the possibility of three-dimensional printers becoming bioprinters, engineered bone tissue is starting to become a reality. The aim of this paper is to give the reader an overview of the work done in the last few years towards the advance of three-dimensional printing methods for engineered bone tissue. This paper is divided into six parts, an introduction, then presentation and discussion of the various printing methods with special focus on additive manufacturing (AM), then of bioprinting technologies, further directions of these technologies are considered and a conclusion is done.


2017 ◽  
Vol 8 (1-2) ◽  
pp. 1-7
Author(s):  
Ruchir Patel ◽  
Tejal Sheth ◽  
Shilpi Shah ◽  
Mihir Shah

Dentistry is truly a great profession and recently it is coming to the terms of use of technology and tech-savvy dentists, who nowadays use smart devices to make their life easier. Researchers are constantly innovating to integrate techno-logy into dentistry. Of all the latest technological innovations in dentistry, the most talked about innovations are three-dimensional (3D) printing and cone beam computed tomography (CBCT), which have made the treatment planning and execution a whole lot easier. Three-dimensional printing like CBCT has been gaining much popularity in the masses. Three-dimensional printing technologies are evolving rapidly in the recent years and can be used with a wide array of different materials. In addition to rapid prototyping, the dominant use in the past, they are now being used in all manner of manufacturing applications in a diversity of industries such as sports goods, fashion items such as jewelry and necklaces to aerospace components, tools for automobile industry, and medical implants also in dentistry for producing models, making scaffolds, etc. In future, 3D printing has ability to change the way many products are manufactured and produced and bring an era of ‘personal manufacturing’. This article introduces 3D printing and gives little information about the technology behind the working of 3D printers. It also gives information about the applications of 3D printers and materials most often used for 3D printed scaffolds for periodontal regeneration.


2018 ◽  
Vol 941 ◽  
pp. 2196-2199 ◽  
Author(s):  
Koki Nonaka ◽  
Soshu Kirihara

Additive manufacturing (AM) and three-dimensional printing (3DP) technologies are being developed for use in manufacturing. In this study, a new AM technology, laser stereo-lithography, that enables to fabricate ceramic components in a single process is developed. This method is demonstrated with alumina under various laser conditions.


Sign in / Sign up

Export Citation Format

Share Document