Effect of Controlled Vibration Dynamics on Concrete Mixtures

2021 ◽  
Vol 118 (5) ◽  
10.1617/13766 ◽  
2003 ◽  
Vol 36 (258) ◽  
pp. 242-249 ◽  
Author(s):  
J. Monteny

Author(s):  
A. El-Desouky ◽  
A. Abbas ◽  
L. Radwan ◽  
O. Moursi

2019 ◽  
Vol 968 ◽  
pp. 96-106
Author(s):  
Oleksandr Pshinko ◽  
Olena Hromova ◽  
Dmytro Rudenko

Study of rheological properties of concrete mixtures based on modified cement systems in order to determine process parameters. Methodology. To study structural-mechanical properties of modified concrete mixtures of different consistency at their horizontal vibrating displacement an oscillatory viscometer was designed. Results. The optimization of the process of vibration displacement of concrete mixtures with the specification of parameters of vibration impacts taking into account structural-mechanical properties of the mixture is performed. It has been established that the viscosity of the modified cement system of the concrete mixture is a variable quantity, which depends on the parameters of the vibration impacts. Scientific novelty. The mechanism of interaction of the modified concrete mixture with the form and the table vibrator during its vibration compaction is determined. On the basis of this, a model of concrete laying process control is proposed, that allows to predict the ability to form a dense concrete structure. Practical significance. Disclosed physical nature of the process of vibrating displacement of modified concrete mixtures using the principles of physical-chemical mechanics of concrete allows reasonably choose the best options for vibration impacts.


2021 ◽  
Vol 1895 (1) ◽  
pp. 012027
Author(s):  
Hussein J. Almansori ◽  
Adnan Al-Sibahy ◽  
Basim Al-Humeidawi

2021 ◽  
Vol 11 (7) ◽  
pp. 3050
Author(s):  
Eva M. García del Toro ◽  
Daniel Alcala-Gonzalez ◽  
María Isabel Más-López ◽  
Sara García-Salgado ◽  
Santiago Pindado

Silicon is the main element in the composition of glass and it has been seen that it can be used as a partial replacement for cement in the manufacture of concrete. Different dosages of glass powder and cement were applied to manufacture the concrete mixes. Initially, the characteristics of fresh concrete were studied, such as consistency, air content, apparent density and workability. Secondly, compressive strength tests were performed on the different concrete mixtures produced. The consistency tests allowed us to classify these concretes within the group of fluids. The air content of these concretes increased with the rate of substitution of cement by glass powder, resulting in lighter concretes. Density tests showed that this parameter decreased as the rate of substitution of cement increased. A coefficient k has been calculated for the substitution of glass powder by cement in the binder, using the Bolomey formula. Also, a mathematical model has been proposed to further analyze the experimental data. Major contributions of this work were to study the possible application of this concrete in different dispersions as a surface protection layer against the action of corrosion, in wind turbine foundations as well as the stabilization of the wind farm roads.


Sign in / Sign up

Export Citation Format

Share Document