Данная статья является продолжением предыдущей и представляет собой пятую, заключительную, часть работы автора. В работе делается обзор результатов исследований, касающихся свойств устойчивости, диссипативности и существования периодических решений стохастических дифференциальных уравнений и систем второго порядка. Приводятся результаты исследований, развивающие теорию устойчивости стохастических дифференциальных уравнений на основе модифицированного второго метода Ляпунова. Работа состоит из пяти частей. В первых двух частях были приведены предварительные сведения из теории вероятностей и случайных процессов, включая построение стохастических интегралов Ито и Стратоновича. В третьей части работы приведены некоторые факты из теории стохастических дифференциальных уравнений. Сформулированы теоремы существования и единственности для стохастических систем. В четвертой части приведены определения и даны основные сведения из теории устойчивости стохастических дифференциальных уравнений Ито. Общие теоремы об устойчивости, диссипативности и периодичности решений рассматриваемых систем сформулированы в терминах существования функций Ляпунова. В настоящей, пятой, части работы даны эффективные достаточные условия устойчивости по вероятности и экспоненциальной устойчивости в среднем квадратическом решений стохастических дифференциальных уравнений и систем второго порядка. Также даны достаточные условия диссипативности и периодичности случайных процессов, определяемых нелинейными дифференциальными уравнениями второго порядка со случайными правыми частями. В качестве примера рассматривается гармонический осциллятор, возмущенный белым шумом. В последнем разделе настоящей статьи сделан краткий обзор работ по стохастической устойчивости, которые характеризуют текущее состояние теории.
This paper is a continuation of the previous papers and presents the fifth final part of the author’s work. The paper surveys the results concerning stability, dissipativity and periodicity properties of the second-order stochastic differential equations and systems. Some new developments in the theory of stability of stochastic differential equations based on the use of the modifying Lyapunov’s second method are presented. The work consists of five parts. In the first two parts we have introduced mathematical preliminaries from probability theory and stochastic processes including the construction of Ito and Stratonovich stochastic integrals. In the third part, some facts from the theory of stochastic differential equations are presented. The existence and uniqueness theorems for stochastic systems are formulated. In the fourth part, definitions are provided and basic facts from the theory of stability of stochastic differential equations are given. The basic general Lyapunov-like theorems on stochastic stability, dissipativity and periodicity for solutions of systems considered are formulated in the terms of the existence of Lyapunov functions. Here in the present fifth part, effective sufficient conditions of stability in probability, exponential stability in mean square for the second-order stochastic differential equations and systems are given. Also we give sufficient conditions for dissipativity and periodicity of random processes defined by nonlinear second-order differential equations with random right-hand sides. As an example the harmonic oscillator disturbed by white noise is considered. In the final section of the present paper, we briefly review some new publications related to stochastic stability that characterizes the state - of - the - art of the theory.