scholarly journals Perbandingan Metode Segmentasi K-Means Clustering dan Segmentasi Region Growing untuk Pengukuran Luas Wilayah Hutan Mangrove

2019 ◽  
Vol 7 (1) ◽  
pp. 31-37
Author(s):  
Tyas Panorama Nan Cerah ◽  
Oky Dwi Nurhayati ◽  
R. Rizal Isnanto

This study aims to examine the k-means clustering and region growing segmentation methods to identify and measure the area of mangrove forests in the Southeast Sulawesi province. The image of the area of this study used Landsat 8 satellite imagery. The area of mangrove forest was carried out by calculating the number of pixels identified as mangrove forests with an area density of 900 m2/pixel. The accuracy of the two segmentation methods in calculating the area was compared based on the same area calculated by LAPAN. The overall accuracy of k-means clustering segmentation method has better accuracy, which is 59.26%, than region growing with 33.33% of accuracy. Both image segmentation methods, k-means clustering and region growing, can be used to calculate the area of mangrove forests in the Southeast Sulawesi region using Landsat 8 satellite imagery.

Jurnal Segara ◽  
2019 ◽  
Vol 15 (2) ◽  
Author(s):  
Yulius Yulius ◽  
Syahrial Nur Amri ◽  
August Daulat ◽  
Sari Indriani Putri

Mangrove forests are tropical coastal vegetation communities, which has the ability to grow in coastal area with tidal and muddy environment. Several functions of mangrove forest such as ecological functions can be used for coastal protection, trapping sediment and strengthen the coastal ecosystems. Coastal waters in Dompu Regency, West Nusa Tenggara have natural mangrove ecosystem with a huge potency and advantages to the region. This study aimed to understand the condition of mangrove ecosystem based on satellite image analysis of Landsat 8 Operational Land Imager (OLI) in 2014 and assess the potency, information related to the utilization by community. Data collection in this study were combined from satellite imagery interpretation with interview and questionnaires. The results showed that the mangrove forest extent in Dompu Regency Coastal Waters were about 90,631 ha with uniformity index 0.68 (medium uniformity). Two mangrove species were found in the region namely Rhizopora stylosa and Rhizopora apiculata and used by the community for several purposes such as firewood, natural coastal protection from tidal, waves and abrasion, also for crabs and fish spawning ground.


2019 ◽  
Vol 9 (2) ◽  
pp. 16-22
Author(s):  
Nadya Fiqi Nurcahyani

Mangrove forests have high ecological, economic and social values ??which function to maintain shoreline stability, protect beaches and riverbanks, filter and remediate waste, and to withstand floods and waves. The facts show that mangrove damage is everywhere, even the intensity of damage and its area tends to increase significantly. Many roles of mangroves require proper management to maintain the existence of mangroves. One way to determine the area of ??mangroves is by processing Landsat 8 satellite imagery. The stages of mangrove identification are carried out by using 564 RGB band merger, then separating the mangrove and non-mangrove objects. Next step is to analyze the density of mangroves using NDVI formula. To maximize monitoring of mangrove area, an android application was created that provides information on the area and density of mangroves at several locations, namely Clungup, Bangsong Teluk Asmara and Cengkrong from 2015 to 2018.The results showed that Landsat 8 satellite imagery can be used to identify changes in the area of ??mangrove forests with good accuracy, namely in the Clungup area of ??90% and Cengkrong of 86.67%. From processing results, the mangrove area in the Clungup area has also decreased from 2015 to 2017 but has increased in 2018 so that the application provides recommendations for embroidering mangroves in 2016 to 2017 and mangrove recommendations are maintained in 2018. As for Bangsong Teluk area Asmara and Cengkrong have increased the area of ??mangroves every year so that the application provides recommendations to be maintained from 2016 to 2018.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4979
Author(s):  
Dong Xiao ◽  
Xiwen Liu ◽  
Ba Tuan Le ◽  
Zhiwen Ji ◽  
Xiaoyu Sun

The ore fragment size on the conveyor belt of concentrators is not only the main index to verify the crushing process, but also affects the production efficiency, operation cost and even production safety of the mine. In order to get the size of ore fragments on the conveyor belt, the image segmentation method is a convenient and fast choice. However, due to the influence of dust, light and uneven color and texture, the traditional ore image segmentation methods are prone to oversegmentation and undersegmentation. In order to solve these problems, this paper proposes an ore image segmentation model called RDU-Net (R: residual connection; DU: DUNet), which combines the residual structure of convolutional neural network with DUNet model, greatly improving the accuracy of image segmentation. RDU-Net can adaptively adjust the receptive field according to the size and shape of different ore fragments, capture the ore edge of different shape and size, and realize the accurate segmentation of ore image. The experimental results show that compared with other U-Net and DUNet, the RDU-Net has significantly improved segmentation accuracy, and has better generalization ability, which can fully meet the requirements of ore fragment size detection in the concentrator.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaodong Huang ◽  
Hui Zhang ◽  
Li Zhuo ◽  
Xiaoguang Li ◽  
Jing Zhang

Extracting the tongue body accurately from a digital tongue image is a challenge for automated tongue diagnoses, as the blurred edge of the tongue body, interference of pathological details, and the huge difference in the size and shape of the tongue. In this study, an automated tongue image segmentation method using enhanced fully convolutional network with encoder-decoder structure was presented. In the frame of the proposed network, the deep residual network was adopted as an encoder to obtain dense feature maps, and a Receptive Field Block was assembled behind the encoder. Receptive Field Block can capture adequate global contextual prior because of its structure of the multibranch convolution layers with varying kernels. Moreover, the Feature Pyramid Network was used as a decoder to fuse multiscale feature maps for gathering sufficient positional information to recover the clear contour of the tongue body. The quantitative evaluation of the segmentation results of 300 tongue images from the SIPL-tongue dataset showed that the average Hausdorff Distance, average Symmetric Mean Absolute Surface Distance, average Dice Similarity Coefficient, average precision, average sensitivity, and average specificity were 11.2963, 3.4737, 97.26%, 95.66%, 98.97%, and 98.68%, respectively. The proposed method achieved the best performance compared with the other four deep-learning-based segmentation methods (including SegNet, FCN, PSPNet, and DeepLab v3+). There were also similar results on the HIT-tongue dataset. The experimental results demonstrated that the proposed method can achieve accurate tongue image segmentation and meet the practical requirements of automated tongue diagnoses.


2013 ◽  
Vol 860-863 ◽  
pp. 2888-2891
Author(s):  
Yu Bing Dong ◽  
Ming Jing Li ◽  
Ying Sun

Thresholding is one of the critical steps in pattern recognition and has a significant effect on the upcoming steps of image application, the important objectives of thresholding are as follows, and separating objects from background, decreasing the capacity of data consequently increases speed. Various threshold segmentation methods are studied. These methods are compared by using MATLAB7.0. The qualities of image segmentation are elaborated. The results show that iterative threshold segmentation method is better than others.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhuqing Yang

Medical image segmentation (IS) is a research field in image processing. Deep learning methods are used to automatically segment organs, tissues, or tumor regions in medical images, which can assist doctors in diagnosing diseases. Since most IS models based on convolutional neural network (CNN) are two-dimensional models, they are not suitable for three-dimensional medical imaging. On the contrary, the three-dimensional segmentation model has problems such as complex network structure and large amount of calculation. Therefore, this study introduces the self-excited compressed dilated convolution (SECDC) module on the basis of the 3D U-Net network and proposes an improved 3D U-Net network model. In the SECDC module, the calculation amount of the model can be reduced by 1 × 1 × 1 convolution. Combining normal convolution and cavity convolution with an expansion rate of 2 can dig out the multiview features of the image. At the same time, the 3D squeeze-and-excitation (3D-SE) module can realize automatic learning of the importance of each layer. The experimental results on the BraTS2019 dataset show that the Dice coefficient and other indicators obtained by the model used in this paper indicate that the overall tumor can reach 0.87, the tumor core can reach 0.84, and the most difficult to segment enhanced tumor can reach 0.80. From the evaluation indicators, it can be analyzed that the improved 3D U-Net model used can greatly reduce the amount of data while achieving better segmentation results, and the model has better robustness. This model can meet the clinical needs of brain tumor segmentation methods.


Author(s):  
August Daulat ◽  
Widodo Setiyo Pranowo ◽  
Syahrial Nur Amri

Nusa Penida, Bali was designated as a Marine Protected Area (MPA) by the Klungkung Local Government in 2010 with support from the Ministry of Marine Affairs and Fisheries, Republic of Indonesia. Mangrove forests located in Nusa Lembongan Island inside the Nusa Penida MPA jurisdiction have decreased in biomass quality and vegetation cover. It’s over the last decades due to influences from natural phenomena and human activities, which obstruct mangrove growth. Study the mangrove forest changes related to the marine protected areas implementation are important to explain the impact of the regulation and its influence on future conservation management in the region. Mangrove forest in Nusa Penida MPA can be monitored using remote sensing technology, specifically Normalized Difference Vegetation Index (NDVI) from Landsat satellite imagery combined with visual and statistical analysis. The NDVI helps in identifying the health of vegetation cover in the region across three different time frames 2003, 2010, and 2017. The results showed that the NDVI decreased slightly between 2003 and 2010. It’s also increased significantly by 2017, where a mostly positive change occurred landwards and adverse change happened in the middle of the mangrove forest towards the sea.


2016 ◽  
Vol 6 (2) ◽  
pp. 69-81
Author(s):  
SENDI YUSANDI ◽  
I NENGAH SURATI JAYA

Yusandi S, Jaya INS. 2016. The estimation model of mangrove forest biomass using a medium resolution satellite imagery in the concession area of forest consession company in West Kalimantan. Bonorowo Wetlands 6: 69-81. Mangrove forest is one of forest ecosystem types having the highest carbon stock in the tropics. Mangrove forests have a good assimilation capability with their environmental elements as well as have a high capability on carbon sequestration. Up to now, however, the availability of data and information on carbon storage, especially on tree biomass content of mangrove is still limited. Conventionally, an accurate estimation of biomass could be obtained from terrestrial measurements, but those methods costly and time-consuming. This study offered an alternative solution to overcome these limitations by using remote sensing technology, i.e., by using the moderate resolution imageries Landsat 8. The objective of this study is to formulate the biomass estimation model using medium resolution satellite imagery, as well as to develop a biomass distribution map based on the selected model. The study found that the NDVI has a considerably high correlation coefficient of larger than > 0.7071 with the stand biomass. On the basis of the values of aggregation deviation, mean deviation, bias, RMSE, χ², R², and s, the best model for estimating the mangrove stand biomass is B=0.00023404 with the R² value of 77.1%. In general, the concession area of BSN Group (PT Kandelia Alam Semesta and PT Bina Ovivipari) have the potential of biomass ranging from 45 to 100 ton per ha.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4012 ◽  
Author(s):  
Jianing Zhen ◽  
Jingjuan Liao ◽  
Guozhuang Shen

Mangrove forests are distributed in intertidal regions that act as a “natural barrier” to the coast. They have enormous ecological, economic, and social value. However, the world’s mangrove forests are declining under immense pressure from anthropogenic and natural disturbances. Accurate information regarding mangrove forests is essential for their protection and restoration. The main objective of this study was to develop a method to improve the classification of mangrove forests using C-band quad-pol Synthetic Aperture Radar (SAR) data (Radarsat-2) and optical data (Landsat 8), and to analyze the spectral and backscattering signatures of mangrove forests. We used a support vector machine (SVM) classification method to classify the land use in Hainan Dongzhaigang National Nature Reserve (HDNNR). The results showed that the overall accuracy using only optical information was 83.5%. Classification accuracy was improved to a varying extent by the addition of different radar data. The highest overall accuracy was 95.0% based on a combination of SAR and optical data. The area of mangrove forest in the reserve was found to be 1981.7 ha, as determined from the group with the highest classification accuracy. Combining optical data with SAR data could improve the classification accuracy and be significant for mangrove forest conservation.


Sign in / Sign up

Export Citation Format

Share Document