MP-RW-LSH
Approximate Nearest Neighbor Search (ANNS) is a fundamental algorithmic problem, with numerous applications in many areas of computer science. Locality-Sensitive Hashing (LSH) is one of the most popular solution approaches for ANNS. A common shortcoming of many LSH schemes is that since they probe only a single bucket in a hash table, they need to use a large number of hash tables to achieve a high query accuracy. For ANNS- L 2 , a multi-probe scheme was proposed to overcome this drawback by strategically probing multiple buckets in a hash table. In this work, we propose MP-RW-LSH, the first and so far only multi-probe LSH solution to ANNS in L 1 distance, and show that it achieves a better tradeoff between scalability and query efficiency than all existing LSH-based solutions. We also explain why a state-of-the-art ANNS -L 1 solution called Cauchy projection LSH (CP-LSH) is fundamentally not suitable for multi-probe extension. Finally, as a use case, we construct, using MP-RW-LSH as the underlying "ANNS- L 1 engine", a new ANNS-E (E for edit distance) solution that beats the state of the art.