scholarly journals Optimisation of hydraulic fracture placement design in anisotropic shale reservoirs using azimuthal LWD sonic and spectral gamma ray analysis

2018 ◽  
Vol 3 (2) ◽  
pp. 83 ◽  
Author(s):  
Gbenga Folorunso Oluyemi ◽  
Tomilayo Simisola Afolabi
2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


2022 ◽  
Author(s):  
Rinat Lukmanov ◽  
Said Jabri ◽  
Ehab Ibrahim

Abstract The tight gas reservoirs of Haima Supergroup provide the majority of gas production in the Sultanate of Oman. The paper discusses a possibility of using the anomalies from natural radioactivity to evaluate the fracture height for complex tight gas in mature fields of Oman. The standard industry practice is adding radioactive isotopes to the proppant. Spectral Gamma Ray log is used to determine near wellbore traced proppant placement. Spectral Noise log in combination with Production logs helps to identify the active fractures contributing to production. These methods complement each other, but they are obviously associated with costs. Hence, majority of wells are fracced without tracers or any other fracture height diagnostics. However, in several brown fields, an alternative approach to identify fracture height has been developed which provides fit-for-purpose results. It is based on the analysis of naturally occurring radioactive minerals (NORM) precipitation. The anomalies were observed in the many gas reservoirs even in cases when tracers were not used. At certain conditions, these anomalies can be used to characterize fracture propagation and optimize future wells hydraulic Fracture design. A high number of PLTs and well test information were analyzed. Since tight formations normally don't produce without fracturing, radioactive anomalies flag the contributing intervals and hence fracture propagation. The main element of analysis procedure is related to that fact that if no tracers applied, the discrepancy between normalized Open Hole Gamma Ray and Gamma Ray taken during PLT after 6-12 months of production can be used instead to establish fracture height. This method cannot be applied for immediate interpretation of fracture propagation because time is required to precipitate NORM and using the anomalies concept. The advantage of this method is that it can be used in some fields to estimate the frac effectiveness of wells without artificial tracers. It is normally assumed that the Natural radioactivity anomalies appear mainly due to co-production of the formation water. However, in the fields of interest the anomalies appear in wells producing only gas and condensate. This observation provides an opportunity for active fracture height determination at minimum cost.


2021 ◽  
Author(s):  
Behjat Haghshenas ◽  
Farhad Qanbari

Abstract Characterization of hydraulic fracture system in multi-fractured horizontal wells (MFHW) is one of the key steps in well spacing optimization of tight and shale reservoirs. Different methods have been proposed in the industry including core-through, micro-seismic, off-set pressure data monitoring during hydraulic fracturing, pressure depletion mapping, rate-transient analysis, pressure-transient analysis, and pressure interference test. Pressure interference test for a production and monitoring well pair includes flowing the production well at a stable rate while keeping the monitoring well shut-in and recording its pressure. In this study, the coupled flow of gas in hydraulic fractures and matrix systems during pressure interference test is modeled using an analytical method. The model is based on Laplace transform combined with pseudo-pressure and pseudo-time. The model is validated against numerical simulation to make sure the inter-well communication test is reasonably represented. Two key parameters were introduced and calculated with time using the analytical model including pressure drawdown ratio and pressure decline ratio. The model is applied to two field cases from Montney formation. In this case, two wells in the gas condensate region of Montney were selected for a pressure interference test. The monitoring well was equipped with downhole gauges. As the producing well was opened for production, the bottom-hole pressure of the monitoring well started declining at much lower rate than the production well. The pressure decline rate in the monitoring well eventually approached that of the producing well after days of production. This whole process was modeled using the analytical model of this study by adjusting the conductivity of the communicating fractures between the well pairs. This study provides a practical analytical tool for quantitative analysis of the interference test in MFHWs. This model can be integrated with other tools for improved characterization of hydraulic fracture systems in tight and shale reservoirs.


2015 ◽  
Vol 2 (2-3) ◽  
pp. 162-166 ◽  
Author(s):  
Yuzhang Liu ◽  
Nailing Xiu ◽  
Yunhong Ding ◽  
Xin Wang ◽  
Yongjun Lu ◽  
...  

2011 ◽  
Vol 14 (02) ◽  
pp. 248-259 ◽  
Author(s):  
E.. Ozkan ◽  
M Brown ◽  
R.. Raghavan ◽  
H.. Kazemi

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.


Sign in / Sign up

Export Citation Format

Share Document